Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opsrcrng | Structured version Visualization version GIF version |
Description: The ring of ordered power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
opsrcrng.o | ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
opsrcrng.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
opsrcrng.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
opsrcrng.t | ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
Ref | Expression |
---|---|
opsrcrng | ⊢ (𝜑 → 𝑂 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
2 | opsrcrng.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
3 | opsrcrng.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
4 | 1, 2, 3 | psrcrng 21210 | . 2 ⊢ (𝜑 → (𝐼 mPwSer 𝑅) ∈ CRing) |
5 | eqidd 2734 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))) | |
6 | opsrcrng.o | . . . 4 ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) | |
7 | opsrcrng.t | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) | |
8 | 1, 6, 7 | opsrbas 21280 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘𝑂)) |
9 | 1, 6, 7 | opsrplusg 21282 | . . . 4 ⊢ (𝜑 → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘𝑂)) |
10 | 9 | oveqdr 7323 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑦 ∈ (Base‘(𝐼 mPwSer 𝑅)))) → (𝑥(+g‘(𝐼 mPwSer 𝑅))𝑦) = (𝑥(+g‘𝑂)𝑦)) |
11 | 1, 6, 7 | opsrmulr 21284 | . . . 4 ⊢ (𝜑 → (.r‘(𝐼 mPwSer 𝑅)) = (.r‘𝑂)) |
12 | 11 | oveqdr 7323 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑦 ∈ (Base‘(𝐼 mPwSer 𝑅)))) → (𝑥(.r‘(𝐼 mPwSer 𝑅))𝑦) = (𝑥(.r‘𝑂)𝑦)) |
13 | 5, 8, 10, 12 | crngpropd 19850 | . 2 ⊢ (𝜑 → ((𝐼 mPwSer 𝑅) ∈ CRing ↔ 𝑂 ∈ CRing)) |
14 | 4, 13 | mpbid 231 | 1 ⊢ (𝜑 → 𝑂 ∈ CRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ⊆ wss 3889 × cxp 5589 ‘cfv 6447 (class class class)co 7295 Basecbs 16940 +gcplusg 16990 .rcmulr 16991 CRingccrg 19812 mPwSer cmps 21135 ordPwSer copws 21139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-iin 4930 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-isom 6456 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-of 7553 df-ofr 7554 df-om 7733 df-1st 7851 df-2nd 7852 df-supp 7998 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-map 8637 df-pm 8638 df-ixp 8706 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-fsupp 9157 df-oi 9297 df-card 9725 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-dec 12466 df-uz 12611 df-fz 13268 df-fzo 13411 df-seq 13750 df-hash 14073 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-mulr 17004 df-sca 17006 df-vsca 17007 df-tset 17009 df-ple 17010 df-0g 17180 df-gsum 17181 df-mre 17323 df-mrc 17324 df-acs 17326 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-mhm 18458 df-submnd 18459 df-grp 18608 df-minusg 18609 df-mulg 18729 df-ghm 18860 df-cntz 18951 df-cmn 19416 df-abl 19417 df-mgp 19749 df-ur 19766 df-ring 19813 df-cring 19814 df-psr 21140 df-opsr 21144 |
This theorem is referenced by: psr1crng 21386 |
Copyright terms: Public domain | W3C validator |