![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opsrcrng | Structured version Visualization version GIF version |
Description: The ring of ordered power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
opsrcrng.o | ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
opsrcrng.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
opsrcrng.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
opsrcrng.t | ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
Ref | Expression |
---|---|
opsrcrng | ⊢ (𝜑 → 𝑂 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
2 | opsrcrng.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
3 | opsrcrng.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
4 | 1, 2, 3 | psrcrng 21951 | . 2 ⊢ (𝜑 → (𝐼 mPwSer 𝑅) ∈ CRing) |
5 | eqidd 2726 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))) | |
6 | opsrcrng.o | . . . 4 ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) | |
7 | opsrcrng.t | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) | |
8 | 1, 6, 7 | opsrbas 22028 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘𝑂)) |
9 | 1, 6, 7 | opsrplusg 22030 | . . . 4 ⊢ (𝜑 → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘𝑂)) |
10 | 9 | oveqdr 7447 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑦 ∈ (Base‘(𝐼 mPwSer 𝑅)))) → (𝑥(+g‘(𝐼 mPwSer 𝑅))𝑦) = (𝑥(+g‘𝑂)𝑦)) |
11 | 1, 6, 7 | opsrmulr 22032 | . . . 4 ⊢ (𝜑 → (.r‘(𝐼 mPwSer 𝑅)) = (.r‘𝑂)) |
12 | 11 | oveqdr 7447 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑦 ∈ (Base‘(𝐼 mPwSer 𝑅)))) → (𝑥(.r‘(𝐼 mPwSer 𝑅))𝑦) = (𝑥(.r‘𝑂)𝑦)) |
13 | 5, 8, 10, 12 | crngpropd 20254 | . 2 ⊢ (𝜑 → ((𝐼 mPwSer 𝑅) ∈ CRing ↔ 𝑂 ∈ CRing)) |
14 | 4, 13 | mpbid 231 | 1 ⊢ (𝜑 → 𝑂 ∈ CRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 × cxp 5676 ‘cfv 6549 (class class class)co 7419 Basecbs 17199 +gcplusg 17252 .rcmulr 17253 CRingccrg 20203 mPwSer cmps 21871 ordPwSer copws 21875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-ofr 7686 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9393 df-sup 9472 df-oi 9540 df-card 9969 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-fzo 13668 df-seq 14008 df-hash 14334 df-struct 17135 df-sets 17152 df-slot 17170 df-ndx 17182 df-base 17200 df-ress 17229 df-plusg 17265 df-mulr 17266 df-sca 17268 df-vsca 17269 df-ip 17270 df-tset 17271 df-ple 17272 df-ds 17274 df-hom 17276 df-cco 17277 df-0g 17442 df-gsum 17443 df-prds 17448 df-pws 17450 df-mre 17585 df-mrc 17586 df-acs 17588 df-mgm 18619 df-sgrp 18698 df-mnd 18714 df-mhm 18759 df-submnd 18760 df-grp 18917 df-minusg 18918 df-mulg 19048 df-ghm 19193 df-cntz 19297 df-cmn 19766 df-abl 19767 df-mgp 20104 df-rng 20122 df-ur 20151 df-ring 20204 df-cring 20205 df-psr 21876 df-opsr 21880 |
This theorem is referenced by: psr1crng 22146 |
Copyright terms: Public domain | W3C validator |