Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdspw Structured version   Visualization version   GIF version

Theorem dvdspw 32442
Description: Exponentiation law for divisibility. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dvdspw ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾𝑀𝐾 ∥ (𝑀𝑁)))

Proof of Theorem dvdspw
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 divides 15459 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀 ↔ ∃𝑚 ∈ ℤ (𝑚 · 𝐾) = 𝑀))
213adant3 1112 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾𝑀 ↔ ∃𝑚 ∈ ℤ (𝑚 · 𝐾) = 𝑀))
3 simpl1 1171 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∈ ℤ)
4 simpl3 1173 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℕ)
5 iddvdsexp 15483 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐾 ∥ (𝐾𝑁))
63, 4, 5syl2anc 576 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∥ (𝐾𝑁))
7 simpr 477 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
8 nnnn0 11708 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
983ad2ant3 1115 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
109adantr 473 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℕ0)
11 zexpcl 13252 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑚𝑁) ∈ ℤ)
127, 10, 11syl2anc 576 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝑚𝑁) ∈ ℤ)
13 zexpcl 13252 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐾𝑁) ∈ ℤ)
143, 10, 13syl2anc 576 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝐾𝑁) ∈ ℤ)
15 dvdsmul2 15482 . . . . . . 7 (((𝑚𝑁) ∈ ℤ ∧ (𝐾𝑁) ∈ ℤ) → (𝐾𝑁) ∥ ((𝑚𝑁) · (𝐾𝑁)))
1612, 14, 15syl2anc 576 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝐾𝑁) ∥ ((𝑚𝑁) · (𝐾𝑁)))
1712, 14zmulcld 11899 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑚𝑁) · (𝐾𝑁)) ∈ ℤ)
18 dvdstr 15496 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝐾𝑁) ∈ ℤ ∧ ((𝑚𝑁) · (𝐾𝑁)) ∈ ℤ) → ((𝐾 ∥ (𝐾𝑁) ∧ (𝐾𝑁) ∥ ((𝑚𝑁) · (𝐾𝑁))) → 𝐾 ∥ ((𝑚𝑁) · (𝐾𝑁))))
193, 14, 17, 18syl3anc 1351 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝐾 ∥ (𝐾𝑁) ∧ (𝐾𝑁) ∥ ((𝑚𝑁) · (𝐾𝑁))) → 𝐾 ∥ ((𝑚𝑁) · (𝐾𝑁))))
206, 16, 19mp2and 686 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∥ ((𝑚𝑁) · (𝐾𝑁)))
21 zcn 11791 . . . . . . 7 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
2221adantl 474 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
23 zcn 11791 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
24233ad2ant1 1113 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℂ)
2524adantr 473 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∈ ℂ)
2622, 25, 10mulexpd 13333 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑚 · 𝐾)↑𝑁) = ((𝑚𝑁) · (𝐾𝑁)))
2720, 26breqtrrd 4951 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∥ ((𝑚 · 𝐾)↑𝑁))
28 oveq1 6977 . . . . 5 ((𝑚 · 𝐾) = 𝑀 → ((𝑚 · 𝐾)↑𝑁) = (𝑀𝑁))
2928breq2d 4935 . . . 4 ((𝑚 · 𝐾) = 𝑀 → (𝐾 ∥ ((𝑚 · 𝐾)↑𝑁) ↔ 𝐾 ∥ (𝑀𝑁)))
3027, 29syl5ibcom 237 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑚 · 𝐾) = 𝑀𝐾 ∥ (𝑀𝑁)))
3130rexlimdva 3223 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∃𝑚 ∈ ℤ (𝑚 · 𝐾) = 𝑀𝐾 ∥ (𝑀𝑁)))
322, 31sylbid 232 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾𝑀𝐾 ∥ (𝑀𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  wrex 3083   class class class wbr 4923  (class class class)co 6970  cc 10325   · cmul 10332  cn 11431  0cn0 11700  cz 11786  cexp 13237  cdvds 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-n0 11701  df-z 11787  df-uz 12052  df-seq 13178  df-exp 13238  df-dvds 15458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator