MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iddvdsexp Structured version   Visualization version   GIF version

Theorem iddvdsexp 15987
Description: An integer divides a positive integer power of itself. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
iddvdsexp ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∥ (𝑀𝑁))

Proof of Theorem iddvdsexp
StepHypRef Expression
1 nnm1nn0 12272 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2 zexpcl 13795 . . . 4 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (𝑀↑(𝑁 − 1)) ∈ ℤ)
31, 2sylan2 593 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀↑(𝑁 − 1)) ∈ ℤ)
4 simpl 483 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
5 dvdsmul2 15986 . . 3 (((𝑀↑(𝑁 − 1)) ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∥ ((𝑀↑(𝑁 − 1)) · 𝑀))
63, 4, 5syl2anc 584 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∥ ((𝑀↑(𝑁 − 1)) · 𝑀))
7 zcn 12322 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
8 expm1t 13809 . . 3 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁) = ((𝑀↑(𝑁 − 1)) · 𝑀))
97, 8sylan 580 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁) = ((𝑀↑(𝑁 − 1)) · 𝑀))
106, 9breqtrrd 5104 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∥ (𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106   class class class wbr 5076  (class class class)co 7277  cc 10867  1c1 10870   · cmul 10874  cmin 11203  cn 11971  0cn0 12231  cz 12317  cexp 13780  cdvds 15961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-er 8496  df-en 8732  df-dom 8733  df-sdom 8734  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-nn 11972  df-n0 12232  df-z 12318  df-uz 12581  df-seq 13720  df-exp 13781  df-dvds 15962
This theorem is referenced by:  dvdsexp2im  16034  prmexpb  16423  rpexp  16425  difsqpwdvds  16586  pockthlem  16604  ablfac1eu  19674  vmappw  26263  vmasum  26362  perfectlem1  26375  oddpwdc  32318  zrtdvds  40343  lighneallem1  45024  lighneallem3  45026  lighneallem4  45029  proththdlem  45032  nnpw2evenALTV  45121
  Copyright terms: Public domain W3C validator