Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zsqcl | Structured version Visualization version GIF version |
Description: Integers are closed under squaring. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
zsqcl | ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12356 | . 2 ⊢ 2 ∈ ℕ0 | |
2 | zexpcl 13903 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 2 ∈ ℕ0) → (𝐴↑2) ∈ ℤ) | |
3 | 1, 2 | mpan2 689 | 1 ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 (class class class)co 7342 2c2 12134 ℕ0cn0 12339 ℤcz 12425 ↑cexp 13888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-n0 12340 df-z 12426 df-uz 12689 df-seq 13828 df-exp 13889 |
This theorem is referenced by: zsqcl2 13962 zesq 14047 sqoddm1div8 14064 sqrt2irrlem 16057 dvdssqim 16362 dvdssq 16370 nn0gcdsq 16554 numdensq 16556 pythagtriplem3 16617 prmreclem1 16715 4sqlem8 16744 4sqlem10 16746 4sqlem11 16754 4sqlem12 16755 4sqlem14 16757 4sqlem15 16758 4sqlem16 16759 odadd2 19546 muval1 26388 dvdssqf 26393 mumullem1 26434 lgsmulsqcoprm 26597 lgsqrlem2 26601 lgsqrlem4 26603 lgsqr 26605 lgsqrmod 26606 lgsqrmodndvds 26607 2lgsoddprmlem2 26663 2sqlem3 26674 2sqlem4 26675 2sqlem8 26680 2sqblem 26685 2sqcoprm 26689 2sqmod 26690 aks4d1p1p2 40381 pellexlem5 40966 rmspecnonsq 41040 rmspecfund 41042 jm2.18 41122 jm2.22 41129 jm2.20nn 41131 jm2.27a 41139 jm2.27c 41141 jm3.1lem3 41153 sfprmdvdsmersenne 45471 |
Copyright terms: Public domain | W3C validator |