MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zsqcl Structured version   Visualization version   GIF version

Theorem zsqcl 14165
Description: Integers are closed under squaring. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
zsqcl (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)

Proof of Theorem zsqcl
StepHypRef Expression
1 2nn0 12540 . 2 2 ∈ ℕ0
2 zexpcl 14113 . 2 ((𝐴 ∈ ℤ ∧ 2 ∈ ℕ0) → (𝐴↑2) ∈ ℤ)
31, 2mpan2 691 1 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  (class class class)co 7430  2c2 12318  0cn0 12523  cz 12610  cexp 14098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-seq 14039  df-exp 14099
This theorem is referenced by:  zsqcl2  14174  zesq  14261  sqoddm1div8  14278  sqrt2irrlem  16280  dvdssqim  16587  dvdssq  16600  nn0gcdsq  16785  numdensq  16787  pythagtriplem3  16851  prmreclem1  16949  4sqlem8  16978  4sqlem10  16980  4sqlem11  16988  4sqlem12  16989  4sqlem14  16991  4sqlem15  16992  4sqlem16  16993  odadd2  19881  muval1  27190  dvdssqf  27195  mumullem1  27236  lgsmulsqcoprm  27401  lgsqrlem2  27405  lgsqrlem4  27407  lgsqr  27409  lgsqrmod  27410  lgsqrmodndvds  27411  2lgsoddprmlem2  27467  2sqlem3  27478  2sqlem4  27479  2sqlem8  27484  2sqblem  27489  2sqcoprm  27493  2sqmod  27494  aks4d1p1p2  42051  pellexlem5  42820  rmspecnonsq  42894  rmspecfund  42896  jm2.18  42976  jm2.22  42983  jm2.20nn  42985  jm2.27a  42993  jm2.27c  42995  jm3.1lem3  43007  sfprmdvdsmersenne  47527
  Copyright terms: Public domain W3C validator