![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdssqlem | Structured version Visualization version GIF version |
Description: Lemma for dvdssq 15696. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
dvdssqlem | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 11756 | . . 3 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
2 | nnz 11756 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | dvdssqim 15689 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) | |
4 | 1, 2, 3 | syl2an 589 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) |
5 | sqgcd 15694 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2))) | |
6 | 5 | adantr 474 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2))) |
7 | nnsqcl 13257 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → (𝑀↑2) ∈ ℕ) | |
8 | nnsqcl 13257 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℕ) | |
9 | gcdeq 15688 | . . . . . . . 8 ⊢ (((𝑀↑2) ∈ ℕ ∧ (𝑁↑2) ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) = (𝑀↑2) ↔ (𝑀↑2) ∥ (𝑁↑2))) | |
10 | 7, 8, 9 | syl2an 589 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) = (𝑀↑2) ↔ (𝑀↑2) ∥ (𝑁↑2))) |
11 | 10 | biimpar 471 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀↑2) gcd (𝑁↑2)) = (𝑀↑2)) |
12 | 6, 11 | eqtrd 2814 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀 gcd 𝑁)↑2) = (𝑀↑2)) |
13 | gcdcl 15644 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0) | |
14 | 1, 2, 13 | syl2an 589 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ0) |
15 | 14 | nn0red 11708 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℝ) |
16 | 14 | nn0ge0d 11710 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝑀 gcd 𝑁)) |
17 | nnre 11387 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
18 | 17 | adantr 474 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ) |
19 | nnnn0 11655 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0) | |
20 | 19 | nn0ge0d 11710 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 0 ≤ 𝑀) |
21 | 20 | adantr 474 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝑀) |
22 | sq11 13260 | . . . . . . 7 ⊢ ((((𝑀 gcd 𝑁) ∈ ℝ ∧ 0 ≤ (𝑀 gcd 𝑁)) ∧ (𝑀 ∈ ℝ ∧ 0 ≤ 𝑀)) → (((𝑀 gcd 𝑁)↑2) = (𝑀↑2) ↔ (𝑀 gcd 𝑁) = 𝑀)) | |
23 | 15, 16, 18, 21, 22 | syl22anc 829 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 gcd 𝑁)↑2) = (𝑀↑2) ↔ (𝑀 gcd 𝑁) = 𝑀)) |
24 | 23 | adantr 474 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → (((𝑀 gcd 𝑁)↑2) = (𝑀↑2) ↔ (𝑀 gcd 𝑁) = 𝑀)) |
25 | 12, 24 | mpbid 224 | . . . 4 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → (𝑀 gcd 𝑁) = 𝑀) |
26 | gcddvds 15641 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) | |
27 | 1, 2, 26 | syl2an 589 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
28 | 27 | adantr 474 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
29 | 28 | simprd 491 | . . . 4 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → (𝑀 gcd 𝑁) ∥ 𝑁) |
30 | 25, 29 | eqbrtrrd 4912 | . . 3 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → 𝑀 ∥ 𝑁) |
31 | 30 | ex 403 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) ∥ (𝑁↑2) → 𝑀 ∥ 𝑁)) |
32 | 4, 31 | impbid 204 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 class class class wbr 4888 (class class class)co 6924 ℝcr 10273 0cc0 10274 ≤ cle 10414 ℕcn 11379 2c2 11435 ℕ0cn0 11647 ℤcz 11733 ↑cexp 13183 ∥ cdvds 15396 gcd cgcd 15632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-sup 8638 df-inf 8639 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-n0 11648 df-z 11734 df-uz 11998 df-rp 12143 df-fl 12917 df-mod 12993 df-seq 13125 df-exp 13184 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-abs 14389 df-dvds 15397 df-gcd 15633 |
This theorem is referenced by: dvdssq 15696 muval1 25322 |
Copyright terms: Public domain | W3C validator |