Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvdssqlem | Structured version Visualization version GIF version |
Description: Lemma for dvdssq 16339. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
dvdssqlem | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 12412 | . . 3 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
2 | nnz 12412 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | dvdssqim 16331 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) | |
4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) |
5 | sqgcd 16337 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2))) | |
6 | 5 | adantr 481 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2))) |
7 | nnsqcl 13917 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → (𝑀↑2) ∈ ℕ) | |
8 | nnsqcl 13917 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℕ) | |
9 | gcdeq 16330 | . . . . . . . 8 ⊢ (((𝑀↑2) ∈ ℕ ∧ (𝑁↑2) ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) = (𝑀↑2) ↔ (𝑀↑2) ∥ (𝑁↑2))) | |
10 | 7, 8, 9 | syl2an 596 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) = (𝑀↑2) ↔ (𝑀↑2) ∥ (𝑁↑2))) |
11 | 10 | biimpar 478 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀↑2) gcd (𝑁↑2)) = (𝑀↑2)) |
12 | 6, 11 | eqtrd 2777 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀 gcd 𝑁)↑2) = (𝑀↑2)) |
13 | gcdcl 16282 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0) | |
14 | 1, 2, 13 | syl2an 596 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ0) |
15 | 14 | nn0red 12364 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℝ) |
16 | 14 | nn0ge0d 12366 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝑀 gcd 𝑁)) |
17 | nnre 12050 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
18 | 17 | adantr 481 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ) |
19 | nnnn0 12310 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0) | |
20 | 19 | nn0ge0d 12366 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 0 ≤ 𝑀) |
21 | 20 | adantr 481 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝑀) |
22 | sq11 13920 | . . . . . . 7 ⊢ ((((𝑀 gcd 𝑁) ∈ ℝ ∧ 0 ≤ (𝑀 gcd 𝑁)) ∧ (𝑀 ∈ ℝ ∧ 0 ≤ 𝑀)) → (((𝑀 gcd 𝑁)↑2) = (𝑀↑2) ↔ (𝑀 gcd 𝑁) = 𝑀)) | |
23 | 15, 16, 18, 21, 22 | syl22anc 836 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 gcd 𝑁)↑2) = (𝑀↑2) ↔ (𝑀 gcd 𝑁) = 𝑀)) |
24 | 23 | adantr 481 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → (((𝑀 gcd 𝑁)↑2) = (𝑀↑2) ↔ (𝑀 gcd 𝑁) = 𝑀)) |
25 | 12, 24 | mpbid 231 | . . . 4 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → (𝑀 gcd 𝑁) = 𝑀) |
26 | gcddvds 16279 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) | |
27 | 1, 2, 26 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
28 | 27 | adantr 481 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
29 | 28 | simprd 496 | . . . 4 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → (𝑀 gcd 𝑁) ∥ 𝑁) |
30 | 25, 29 | eqbrtrrd 5109 | . . 3 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → 𝑀 ∥ 𝑁) |
31 | 30 | ex 413 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) ∥ (𝑁↑2) → 𝑀 ∥ 𝑁)) |
32 | 4, 31 | impbid 211 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5085 (class class class)co 7313 ℝcr 10940 0cc0 10941 ≤ cle 11080 ℕcn 12043 2c2 12098 ℕ0cn0 12303 ℤcz 12389 ↑cexp 13852 ∥ cdvds 16032 gcd cgcd 16270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-pre-sup 11019 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-sup 9269 df-inf 9270 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-3 12107 df-n0 12304 df-z 12390 df-uz 12653 df-rp 12801 df-fl 13582 df-mod 13660 df-seq 13792 df-exp 13853 df-cj 14879 df-re 14880 df-im 14881 df-sqrt 15015 df-abs 15016 df-dvds 16033 df-gcd 16271 |
This theorem is referenced by: dvdssq 16339 muval1 26353 fltabcoprm 40689 |
Copyright terms: Public domain | W3C validator |