![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdssqlem | Structured version Visualization version GIF version |
Description: Lemma for dvdssq 16503. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
dvdssqlem | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 12578 | . . 3 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
2 | nnz 12578 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | dvdssqim 16495 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) | |
4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) |
5 | sqgcd 16501 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2))) | |
6 | 5 | adantr 481 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2))) |
7 | nnsqcl 14092 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → (𝑀↑2) ∈ ℕ) | |
8 | nnsqcl 14092 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℕ) | |
9 | gcdeq 16494 | . . . . . . . 8 ⊢ (((𝑀↑2) ∈ ℕ ∧ (𝑁↑2) ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) = (𝑀↑2) ↔ (𝑀↑2) ∥ (𝑁↑2))) | |
10 | 7, 8, 9 | syl2an 596 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) = (𝑀↑2) ↔ (𝑀↑2) ∥ (𝑁↑2))) |
11 | 10 | biimpar 478 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀↑2) gcd (𝑁↑2)) = (𝑀↑2)) |
12 | 6, 11 | eqtrd 2772 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀 gcd 𝑁)↑2) = (𝑀↑2)) |
13 | gcdcl 16446 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0) | |
14 | 1, 2, 13 | syl2an 596 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ0) |
15 | 14 | nn0red 12532 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℝ) |
16 | 14 | nn0ge0d 12534 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝑀 gcd 𝑁)) |
17 | nnre 12218 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
18 | 17 | adantr 481 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ) |
19 | nnnn0 12478 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0) | |
20 | 19 | nn0ge0d 12534 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 0 ≤ 𝑀) |
21 | 20 | adantr 481 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝑀) |
22 | sq11 14095 | . . . . . . 7 ⊢ ((((𝑀 gcd 𝑁) ∈ ℝ ∧ 0 ≤ (𝑀 gcd 𝑁)) ∧ (𝑀 ∈ ℝ ∧ 0 ≤ 𝑀)) → (((𝑀 gcd 𝑁)↑2) = (𝑀↑2) ↔ (𝑀 gcd 𝑁) = 𝑀)) | |
23 | 15, 16, 18, 21, 22 | syl22anc 837 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 gcd 𝑁)↑2) = (𝑀↑2) ↔ (𝑀 gcd 𝑁) = 𝑀)) |
24 | 23 | adantr 481 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → (((𝑀 gcd 𝑁)↑2) = (𝑀↑2) ↔ (𝑀 gcd 𝑁) = 𝑀)) |
25 | 12, 24 | mpbid 231 | . . . 4 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → (𝑀 gcd 𝑁) = 𝑀) |
26 | gcddvds 16443 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) | |
27 | 1, 2, 26 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
28 | 27 | adantr 481 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
29 | 28 | simprd 496 | . . . 4 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → (𝑀 gcd 𝑁) ∥ 𝑁) |
30 | 25, 29 | eqbrtrrd 5172 | . . 3 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → 𝑀 ∥ 𝑁) |
31 | 30 | ex 413 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) ∥ (𝑁↑2) → 𝑀 ∥ 𝑁)) |
32 | 4, 31 | impbid 211 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7408 ℝcr 11108 0cc0 11109 ≤ cle 11248 ℕcn 12211 2c2 12266 ℕ0cn0 12471 ℤcz 12557 ↑cexp 14026 ∥ cdvds 16196 gcd cgcd 16434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fl 13756 df-mod 13834 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-dvds 16197 df-gcd 16435 |
This theorem is referenced by: dvdssq 16503 muval1 26634 fltabcoprm 41385 |
Copyright terms: Public domain | W3C validator |