Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvdsunit | Structured version Visualization version GIF version |
Description: A divisor of a unit is a unit. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
dvdsunit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
dvdsunit.3 | ⊢ ∥ = (∥r‘𝑅) |
Ref | Expression |
---|---|
dvdsunit | ⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋 ∧ 𝑋 ∈ 𝑈) → 𝑌 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 19783 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | dvdsunit.3 | . . . . . 6 ⊢ ∥ = (∥r‘𝑅) | |
4 | 2, 3 | dvdsrtr 19882 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∥ 𝑋 ∧ 𝑋 ∥ (1r‘𝑅)) → 𝑌 ∥ (1r‘𝑅)) |
5 | 4 | 3expia 1120 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∥ 𝑋) → (𝑋 ∥ (1r‘𝑅) → 𝑌 ∥ (1r‘𝑅))) |
6 | 1, 5 | sylan 580 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋) → (𝑋 ∥ (1r‘𝑅) → 𝑌 ∥ (1r‘𝑅))) |
7 | dvdsunit.1 | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
8 | eqid 2738 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
9 | 7, 8, 3 | crngunit 19892 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ (1r‘𝑅))) |
10 | 9 | adantr 481 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋) → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ (1r‘𝑅))) |
11 | 7, 8, 3 | crngunit 19892 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑌 ∈ 𝑈 ↔ 𝑌 ∥ (1r‘𝑅))) |
12 | 11 | adantr 481 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋) → (𝑌 ∈ 𝑈 ↔ 𝑌 ∥ (1r‘𝑅))) |
13 | 6, 10, 12 | 3imtr4d 294 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋) → (𝑋 ∈ 𝑈 → 𝑌 ∈ 𝑈)) |
14 | 13 | 3impia 1116 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋 ∧ 𝑋 ∈ 𝑈) → 𝑌 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6427 Basecbs 16900 1rcur 19725 Ringcrg 19771 CRingccrg 19772 ∥rcdsr 19868 Unitcui 19869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-2nd 7822 df-tpos 8030 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-nn 11962 df-2 12024 df-3 12025 df-sets 16853 df-slot 16871 df-ndx 16883 df-base 16901 df-plusg 16963 df-mulr 16964 df-mgm 18314 df-sgrp 18363 df-mnd 18374 df-cmn 19376 df-mgp 19709 df-ring 19773 df-cring 19774 df-oppr 19850 df-dvdsr 19871 df-unit 19872 |
This theorem is referenced by: unitmulclb 19895 |
Copyright terms: Public domain | W3C validator |