MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsunit Structured version   Visualization version   GIF version

Theorem dvdsunit 20295
Description: A divisor of a unit is a unit. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dvdsunit.1 𝑈 = (Unit‘𝑅)
dvdsunit.3 = (∥r𝑅)
Assertion
Ref Expression
dvdsunit ((𝑅 ∈ CRing ∧ 𝑌 𝑋𝑋𝑈) → 𝑌𝑈)

Proof of Theorem dvdsunit
StepHypRef Expression
1 crngring 20161 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 eqid 2731 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 dvdsunit.3 . . . . . 6 = (∥r𝑅)
42, 3dvdsrtr 20284 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌 𝑋𝑋 (1r𝑅)) → 𝑌 (1r𝑅))
543expia 1121 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌 𝑋) → (𝑋 (1r𝑅) → 𝑌 (1r𝑅)))
61, 5sylan 580 . . 3 ((𝑅 ∈ CRing ∧ 𝑌 𝑋) → (𝑋 (1r𝑅) → 𝑌 (1r𝑅)))
7 dvdsunit.1 . . . . 5 𝑈 = (Unit‘𝑅)
8 eqid 2731 . . . . 5 (1r𝑅) = (1r𝑅)
97, 8, 3crngunit 20294 . . . 4 (𝑅 ∈ CRing → (𝑋𝑈𝑋 (1r𝑅)))
109adantr 480 . . 3 ((𝑅 ∈ CRing ∧ 𝑌 𝑋) → (𝑋𝑈𝑋 (1r𝑅)))
117, 8, 3crngunit 20294 . . . 4 (𝑅 ∈ CRing → (𝑌𝑈𝑌 (1r𝑅)))
1211adantr 480 . . 3 ((𝑅 ∈ CRing ∧ 𝑌 𝑋) → (𝑌𝑈𝑌 (1r𝑅)))
136, 10, 123imtr4d 294 . 2 ((𝑅 ∈ CRing ∧ 𝑌 𝑋) → (𝑋𝑈𝑌𝑈))
14133impia 1117 1 ((𝑅 ∈ CRing ∧ 𝑌 𝑋𝑋𝑈) → 𝑌𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  Basecbs 17117  1rcur 20097  Ringcrg 20149  CRingccrg 20150  rcdsr 20270  Unitcui 20271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-mulr 17172  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-cmn 19692  df-mgp 20057  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274
This theorem is referenced by:  unitmulclb  20297  rsprprmprmidl  33482
  Copyright terms: Public domain W3C validator