Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulgnngsum | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.) |
Ref | Expression |
---|---|
mulgnngsum.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnngsum.t | ⊢ · = (.g‘𝐺) |
mulgnngsum.f | ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) |
Ref | Expression |
---|---|
mulgnngsum | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnnuz 12551 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
2 | 1 | biimpi 215 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ (ℤ≥‘1)) |
4 | mulgnngsum.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)) |
6 | eqidd 2739 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) ∧ 𝑥 = 𝑖) → 𝑋 = 𝑋) | |
7 | simpr 484 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁)) | |
8 | simpr 484 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
9 | 8 | adantr 480 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑋 ∈ 𝐵) |
10 | 5, 6, 7, 9 | fvmptd 6864 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑖) = 𝑋) |
11 | elfznn 13214 | . . . . 5 ⊢ (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ) | |
12 | fvconst2g 7059 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑖 ∈ ℕ) → ((ℕ × {𝑋})‘𝑖) = 𝑋) | |
13 | 8, 11, 12 | syl2an 595 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑖) = 𝑋) |
14 | 10, 13 | eqtr4d 2781 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑖) = ((ℕ × {𝑋})‘𝑖)) |
15 | 3, 14 | seqfveq 13675 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (seq1((+g‘𝐺), 𝐹)‘𝑁) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
16 | mulgnngsum.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
17 | eqid 2738 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
18 | elfvex 6789 | . . . . 5 ⊢ (𝑋 ∈ (Base‘𝐺) → 𝐺 ∈ V) | |
19 | 18, 16 | eleq2s 2857 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝐺 ∈ V) |
20 | 19 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ V) |
21 | 8 | adantr 480 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋 ∈ 𝐵) |
22 | 21, 4 | fmptd 6970 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝐹:(1...𝑁)⟶𝐵) |
23 | 16, 17, 20, 3, 22 | gsumval2 18285 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg 𝐹) = (seq1((+g‘𝐺), 𝐹)‘𝑁)) |
24 | mulgnngsum.t | . . 3 ⊢ · = (.g‘𝐺) | |
25 | eqid 2738 | . . 3 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
26 | 16, 17, 24, 25 | mulgnn 18623 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
27 | 15, 23, 26 | 3eqtr4rd 2789 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 ↦ cmpt 5153 × cxp 5578 ‘cfv 6418 (class class class)co 7255 1c1 10803 ℕcn 11903 ℤ≥cuz 12511 ...cfz 13168 seqcseq 13649 Basecbs 16840 +gcplusg 16888 Σg cgsu 17068 .gcmg 18615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-seq 13650 df-0g 17069 df-gsum 17070 df-mulg 18616 |
This theorem is referenced by: mulgnn0gsum 18625 |
Copyright terms: Public domain | W3C validator |