![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgnngsum | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.) |
Ref | Expression |
---|---|
mulgnngsum.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnngsum.t | ⊢ · = (.g‘𝐺) |
mulgnngsum.f | ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) |
Ref | Expression |
---|---|
mulgnngsum | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnnuz 12947 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
2 | 1 | biimpi 216 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ (ℤ≥‘1)) |
4 | mulgnngsum.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)) |
6 | eqidd 2741 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) ∧ 𝑥 = 𝑖) → 𝑋 = 𝑋) | |
7 | simpr 484 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁)) | |
8 | simpr 484 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
9 | 8 | adantr 480 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑋 ∈ 𝐵) |
10 | 5, 6, 7, 9 | fvmptd 7036 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑖) = 𝑋) |
11 | elfznn 13613 | . . . . 5 ⊢ (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ) | |
12 | fvconst2g 7239 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑖 ∈ ℕ) → ((ℕ × {𝑋})‘𝑖) = 𝑋) | |
13 | 8, 11, 12 | syl2an 595 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑖) = 𝑋) |
14 | 10, 13 | eqtr4d 2783 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑖) = ((ℕ × {𝑋})‘𝑖)) |
15 | 3, 14 | seqfveq 14077 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (seq1((+g‘𝐺), 𝐹)‘𝑁) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
16 | mulgnngsum.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
17 | eqid 2740 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
18 | elfvex 6958 | . . . . 5 ⊢ (𝑋 ∈ (Base‘𝐺) → 𝐺 ∈ V) | |
19 | 18, 16 | eleq2s 2862 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝐺 ∈ V) |
20 | 19 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ V) |
21 | 8 | adantr 480 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋 ∈ 𝐵) |
22 | 21, 4 | fmptd 7148 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝐹:(1...𝑁)⟶𝐵) |
23 | 16, 17, 20, 3, 22 | gsumval2 18724 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg 𝐹) = (seq1((+g‘𝐺), 𝐹)‘𝑁)) |
24 | mulgnngsum.t | . . 3 ⊢ · = (.g‘𝐺) | |
25 | eqid 2740 | . . 3 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
26 | 16, 17, 24, 25 | mulgnn 19115 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
27 | 15, 23, 26 | 3eqtr4rd 2791 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 ↦ cmpt 5249 × cxp 5698 ‘cfv 6573 (class class class)co 7448 1c1 11185 ℕcn 12293 ℤ≥cuz 12903 ...cfz 13567 seqcseq 14052 Basecbs 17258 +gcplusg 17311 Σg cgsu 17500 .gcmg 19107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-seq 14053 df-0g 17501 df-gsum 17502 df-mulg 19108 |
This theorem is referenced by: mulgnn0gsum 19120 |
Copyright terms: Public domain | W3C validator |