Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulgnngsum | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.) |
Ref | Expression |
---|---|
mulgnngsum.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnngsum.t | ⊢ · = (.g‘𝐺) |
mulgnngsum.f | ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) |
Ref | Expression |
---|---|
mulgnngsum | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnnuz 12307 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
2 | 1 | biimpi 219 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
3 | 2 | adantr 485 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ (ℤ≥‘1)) |
4 | mulgnngsum.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)) |
6 | eqidd 2760 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) ∧ 𝑥 = 𝑖) → 𝑋 = 𝑋) | |
7 | simpr 489 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁)) | |
8 | simpr 489 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
9 | 8 | adantr 485 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑋 ∈ 𝐵) |
10 | 5, 6, 7, 9 | fvmptd 6759 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑖) = 𝑋) |
11 | elfznn 12970 | . . . . 5 ⊢ (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ) | |
12 | fvconst2g 6948 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑖 ∈ ℕ) → ((ℕ × {𝑋})‘𝑖) = 𝑋) | |
13 | 8, 11, 12 | syl2an 599 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑖) = 𝑋) |
14 | 10, 13 | eqtr4d 2797 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑖) = ((ℕ × {𝑋})‘𝑖)) |
15 | 3, 14 | seqfveq 13429 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (seq1((+g‘𝐺), 𝐹)‘𝑁) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
16 | mulgnngsum.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
17 | eqid 2759 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
18 | elfvex 6684 | . . . . 5 ⊢ (𝑋 ∈ (Base‘𝐺) → 𝐺 ∈ V) | |
19 | 18, 16 | eleq2s 2869 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝐺 ∈ V) |
20 | 19 | adantl 486 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ V) |
21 | 8 | adantr 485 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋 ∈ 𝐵) |
22 | 21, 4 | fmptd 6862 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝐹:(1...𝑁)⟶𝐵) |
23 | 16, 17, 20, 3, 22 | gsumval2 17947 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg 𝐹) = (seq1((+g‘𝐺), 𝐹)‘𝑁)) |
24 | mulgnngsum.t | . . 3 ⊢ · = (.g‘𝐺) | |
25 | eqid 2759 | . . 3 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
26 | 16, 17, 24, 25 | mulgnn 18284 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
27 | 15, 23, 26 | 3eqtr4rd 2805 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3407 {csn 4515 ↦ cmpt 5105 × cxp 5515 ‘cfv 6328 (class class class)co 7143 1c1 10561 ℕcn 11659 ℤ≥cuz 12267 ...cfz 12924 seqcseq 13403 Basecbs 16526 +gcplusg 16608 Σg cgsu 16757 .gcmg 18276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rmo 3076 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-om 7573 df-1st 7686 df-2nd 7687 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-er 8292 df-en 8521 df-dom 8522 df-sdom 8523 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-nn 11660 df-n0 11920 df-z 12006 df-uz 12268 df-fz 12925 df-seq 13404 df-0g 16758 df-gsum 16759 df-mulg 18277 |
This theorem is referenced by: mulgnn0gsum 18286 |
Copyright terms: Public domain | W3C validator |