MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnngsum Structured version   Visualization version   GIF version

Theorem mulgnngsum 18624
Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
mulgnngsum.b 𝐵 = (Base‘𝐺)
mulgnngsum.t · = (.g𝐺)
mulgnngsum.f 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)
Assertion
Ref Expression
mulgnngsum ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑋
Allowed substitution hints:   · (𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem mulgnngsum
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elnnuz 12551 . . . . 5 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
21biimpi 215 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
32adantr 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ (ℤ‘1))
4 mulgnngsum.f . . . . . 6 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)
54a1i 11 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋))
6 eqidd 2739 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) ∧ 𝑥 = 𝑖) → 𝑋 = 𝑋)
7 simpr 484 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
8 simpr 484 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑋𝐵)
98adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑋𝐵)
105, 6, 7, 9fvmptd 6864 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = 𝑋)
11 elfznn 13214 . . . . 5 (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ)
12 fvconst2g 7059 . . . . 5 ((𝑋𝐵𝑖 ∈ ℕ) → ((ℕ × {𝑋})‘𝑖) = 𝑋)
138, 11, 12syl2an 595 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑖) = 𝑋)
1410, 13eqtr4d 2781 . . 3 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = ((ℕ × {𝑋})‘𝑖))
153, 14seqfveq 13675 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1((+g𝐺), 𝐹)‘𝑁) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
16 mulgnngsum.b . . 3 𝐵 = (Base‘𝐺)
17 eqid 2738 . . 3 (+g𝐺) = (+g𝐺)
18 elfvex 6789 . . . . 5 (𝑋 ∈ (Base‘𝐺) → 𝐺 ∈ V)
1918, 16eleq2s 2857 . . . 4 (𝑋𝐵𝐺 ∈ V)
2019adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝐺 ∈ V)
218adantr 480 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋𝐵)
2221, 4fmptd 6970 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝐹:(1...𝑁)⟶𝐵)
2316, 17, 20, 3, 22gsumval2 18285 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), 𝐹)‘𝑁))
24 mulgnngsum.t . . 3 · = (.g𝐺)
25 eqid 2738 . . 3 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
2616, 17, 24, 25mulgnn 18623 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
2715, 23, 263eqtr4rd 2789 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558  cmpt 5153   × cxp 5578  cfv 6418  (class class class)co 7255  1c1 10803  cn 11903  cuz 12511  ...cfz 13168  seqcseq 13649  Basecbs 16840  +gcplusg 16888   Σg cgsu 17068  .gcmg 18615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-0g 17069  df-gsum 17070  df-mulg 18616
This theorem is referenced by:  mulgnn0gsum  18625
  Copyright terms: Public domain W3C validator