MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnngsum Structured version   Visualization version   GIF version

Theorem mulgnngsum 18709
Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
mulgnngsum.b 𝐵 = (Base‘𝐺)
mulgnngsum.t · = (.g𝐺)
mulgnngsum.f 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)
Assertion
Ref Expression
mulgnngsum ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑋
Allowed substitution hints:   · (𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem mulgnngsum
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elnnuz 12622 . . . . 5 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
21biimpi 215 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
32adantr 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ (ℤ‘1))
4 mulgnngsum.f . . . . . 6 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)
54a1i 11 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋))
6 eqidd 2739 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) ∧ 𝑥 = 𝑖) → 𝑋 = 𝑋)
7 simpr 485 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
8 simpr 485 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑋𝐵)
98adantr 481 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑋𝐵)
105, 6, 7, 9fvmptd 6882 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = 𝑋)
11 elfznn 13285 . . . . 5 (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ)
12 fvconst2g 7077 . . . . 5 ((𝑋𝐵𝑖 ∈ ℕ) → ((ℕ × {𝑋})‘𝑖) = 𝑋)
138, 11, 12syl2an 596 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑖) = 𝑋)
1410, 13eqtr4d 2781 . . 3 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = ((ℕ × {𝑋})‘𝑖))
153, 14seqfveq 13747 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1((+g𝐺), 𝐹)‘𝑁) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
16 mulgnngsum.b . . 3 𝐵 = (Base‘𝐺)
17 eqid 2738 . . 3 (+g𝐺) = (+g𝐺)
18 elfvex 6807 . . . . 5 (𝑋 ∈ (Base‘𝐺) → 𝐺 ∈ V)
1918, 16eleq2s 2857 . . . 4 (𝑋𝐵𝐺 ∈ V)
2019adantl 482 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝐺 ∈ V)
218adantr 481 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋𝐵)
2221, 4fmptd 6988 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝐹:(1...𝑁)⟶𝐵)
2316, 17, 20, 3, 22gsumval2 18370 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), 𝐹)‘𝑁))
24 mulgnngsum.t . . 3 · = (.g𝐺)
25 eqid 2738 . . 3 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
2616, 17, 24, 25mulgnn 18708 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
2715, 23, 263eqtr4rd 2789 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561  cmpt 5157   × cxp 5587  cfv 6433  (class class class)co 7275  1c1 10872  cn 11973  cuz 12582  ...cfz 13239  seqcseq 13721  Basecbs 16912  +gcplusg 16962   Σg cgsu 17151  .gcmg 18700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-0g 17152  df-gsum 17153  df-mulg 18701
This theorem is referenced by:  mulgnn0gsum  18710
  Copyright terms: Public domain W3C validator