![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgnngsum | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.) |
Ref | Expression |
---|---|
mulgnngsum.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnngsum.t | ⊢ · = (.g‘𝐺) |
mulgnngsum.f | ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) |
Ref | Expression |
---|---|
mulgnngsum | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnnuz 12899 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
2 | 1 | biimpi 215 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
3 | 2 | adantr 479 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ (ℤ≥‘1)) |
4 | mulgnngsum.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)) |
6 | eqidd 2726 | . . . . 5 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) ∧ 𝑥 = 𝑖) → 𝑋 = 𝑋) | |
7 | simpr 483 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁)) | |
8 | simpr 483 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
9 | 8 | adantr 479 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑋 ∈ 𝐵) |
10 | 5, 6, 7, 9 | fvmptd 7011 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑖) = 𝑋) |
11 | elfznn 13565 | . . . . 5 ⊢ (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ) | |
12 | fvconst2g 7214 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑖 ∈ ℕ) → ((ℕ × {𝑋})‘𝑖) = 𝑋) | |
13 | 8, 11, 12 | syl2an 594 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑖) = 𝑋) |
14 | 10, 13 | eqtr4d 2768 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑖) = ((ℕ × {𝑋})‘𝑖)) |
15 | 3, 14 | seqfveq 14027 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (seq1((+g‘𝐺), 𝐹)‘𝑁) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
16 | mulgnngsum.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
17 | eqid 2725 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
18 | elfvex 6934 | . . . . 5 ⊢ (𝑋 ∈ (Base‘𝐺) → 𝐺 ∈ V) | |
19 | 18, 16 | eleq2s 2843 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝐺 ∈ V) |
20 | 19 | adantl 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ V) |
21 | 8 | adantr 479 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋 ∈ 𝐵) |
22 | 21, 4 | fmptd 7123 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝐹:(1...𝑁)⟶𝐵) |
23 | 16, 17, 20, 3, 22 | gsumval2 18649 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg 𝐹) = (seq1((+g‘𝐺), 𝐹)‘𝑁)) |
24 | mulgnngsum.t | . . 3 ⊢ · = (.g‘𝐺) | |
25 | eqid 2725 | . . 3 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
26 | 16, 17, 24, 25 | mulgnn 19039 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
27 | 15, 23, 26 | 3eqtr4rd 2776 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 {csn 4630 ↦ cmpt 5232 × cxp 5676 ‘cfv 6549 (class class class)co 7419 1c1 11141 ℕcn 12245 ℤ≥cuz 12855 ...cfz 13519 seqcseq 14002 Basecbs 17183 +gcplusg 17236 Σg cgsu 17425 .gcmg 19031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-seq 14003 df-0g 17426 df-gsum 17427 df-mulg 19032 |
This theorem is referenced by: mulgnn0gsum 19043 |
Copyright terms: Public domain | W3C validator |