MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnngsum Structured version   Visualization version   GIF version

Theorem mulgnngsum 18989
Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
mulgnngsum.b 𝐵 = (Base‘𝐺)
mulgnngsum.t · = (.g𝐺)
mulgnngsum.f 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)
Assertion
Ref Expression
mulgnngsum ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑋
Allowed substitution hints:   · (𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem mulgnngsum
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elnnuz 12773 . . . . 5 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
21biimpi 216 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
32adantr 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ (ℤ‘1))
4 mulgnngsum.f . . . . . 6 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)
54a1i 11 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋))
6 eqidd 2732 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) ∧ 𝑥 = 𝑖) → 𝑋 = 𝑋)
7 simpr 484 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
8 simpr 484 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑋𝐵)
98adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑋𝐵)
105, 6, 7, 9fvmptd 6936 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = 𝑋)
11 elfznn 13450 . . . . 5 (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ)
12 fvconst2g 7136 . . . . 5 ((𝑋𝐵𝑖 ∈ ℕ) → ((ℕ × {𝑋})‘𝑖) = 𝑋)
138, 11, 12syl2an 596 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑖) = 𝑋)
1410, 13eqtr4d 2769 . . 3 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = ((ℕ × {𝑋})‘𝑖))
153, 14seqfveq 13930 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1((+g𝐺), 𝐹)‘𝑁) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
16 mulgnngsum.b . . 3 𝐵 = (Base‘𝐺)
17 eqid 2731 . . 3 (+g𝐺) = (+g𝐺)
18 elfvex 6857 . . . . 5 (𝑋 ∈ (Base‘𝐺) → 𝐺 ∈ V)
1918, 16eleq2s 2849 . . . 4 (𝑋𝐵𝐺 ∈ V)
2019adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝐺 ∈ V)
218adantr 480 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋𝐵)
2221, 4fmptd 7047 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝐹:(1...𝑁)⟶𝐵)
2316, 17, 20, 3, 22gsumval2 18591 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), 𝐹)‘𝑁))
24 mulgnngsum.t . . 3 · = (.g𝐺)
25 eqid 2731 . . 3 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
2616, 17, 24, 25mulgnn 18985 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
2715, 23, 263eqtr4rd 2777 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4576  cmpt 5172   × cxp 5614  cfv 6481  (class class class)co 7346  1c1 11004  cn 12122  cuz 12729  ...cfz 13404  seqcseq 13905  Basecbs 17117  +gcplusg 17158   Σg cgsu 17341  .gcmg 18977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-seq 13906  df-0g 17342  df-gsum 17343  df-mulg 18978
This theorem is referenced by:  mulgnn0gsum  18990
  Copyright terms: Public domain W3C validator