| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkcompim | Structured version Visualization version GIF version | ||
| Description: Implications for the properties of the components of a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 2-Jan-2021.) |
| Ref | Expression |
|---|---|
| wlkcomp.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| wlkcomp.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| wlkcomp.1 | ⊢ 𝐹 = (1st ‘𝑊) |
| wlkcomp.2 | ⊢ 𝑃 = (2nd ‘𝑊) |
| Ref | Expression |
|---|---|
| wlkcompim | ⊢ (𝑊 ∈ (Walks‘𝐺) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6863 | . 2 ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝐺 ∈ V) | |
| 2 | wlkcpr 29614 | . . 3 ⊢ (𝑊 ∈ (Walks‘𝐺) ↔ (1st ‘𝑊)(Walks‘𝐺)(2nd ‘𝑊)) | |
| 3 | wlkvv 29612 | . . 3 ⊢ ((1st ‘𝑊)(Walks‘𝐺)(2nd ‘𝑊) → 𝑊 ∈ (V × V)) | |
| 4 | 2, 3 | sylbi 217 | . 2 ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝑊 ∈ (V × V)) |
| 5 | wlkcomp.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 6 | wlkcomp.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 7 | wlkcomp.1 | . . . 4 ⊢ 𝐹 = (1st ‘𝑊) | |
| 8 | wlkcomp.2 | . . . 4 ⊢ 𝑃 = (2nd ‘𝑊) | |
| 9 | 5, 6, 7, 8 | wlkcomp 29616 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑊 ∈ (V × V)) → (𝑊 ∈ (Walks‘𝐺) ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| 10 | 9 | biimpcd 249 | . 2 ⊢ (𝑊 ∈ (Walks‘𝐺) → ((𝐺 ∈ V ∧ 𝑊 ∈ (V × V)) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| 11 | 1, 4, 10 | mp2and 699 | 1 ⊢ (𝑊 ∈ (Walks‘𝐺) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 if-wif 1062 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 {csn 4575 {cpr 4577 class class class wbr 5093 × cxp 5617 dom cdm 5619 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 1st c1st 7925 2nd c2nd 7926 0cc0 11012 1c1 11013 + caddc 11015 ...cfz 13413 ..^cfzo 13560 ♯chash 14243 Word cword 14426 Vtxcvtx 28981 iEdgciedg 28982 Walkscwlks 29582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-n0 12388 df-z 12475 df-uz 12739 df-fz 13414 df-fzo 13561 df-hash 14244 df-word 14427 df-wlks 29585 |
| This theorem is referenced by: wlkelwrd 29618 |
| Copyright terms: Public domain | W3C validator |