![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkcompim | Structured version Visualization version GIF version |
Description: Implications for the properties of the components of a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 2-Jan-2021.) |
Ref | Expression |
---|---|
wlkcomp.v | β’ π = (VtxβπΊ) |
wlkcomp.i | β’ πΌ = (iEdgβπΊ) |
wlkcomp.1 | β’ πΉ = (1st βπ) |
wlkcomp.2 | β’ π = (2nd βπ) |
Ref | Expression |
---|---|
wlkcompim | β’ (π β (WalksβπΊ) β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6929 | . 2 β’ (π β (WalksβπΊ) β πΊ β V) | |
2 | wlkcpr 28883 | . . 3 β’ (π β (WalksβπΊ) β (1st βπ)(WalksβπΊ)(2nd βπ)) | |
3 | wlkvv 28881 | . . 3 β’ ((1st βπ)(WalksβπΊ)(2nd βπ) β π β (V Γ V)) | |
4 | 2, 3 | sylbi 216 | . 2 β’ (π β (WalksβπΊ) β π β (V Γ V)) |
5 | wlkcomp.v | . . . 4 β’ π = (VtxβπΊ) | |
6 | wlkcomp.i | . . . 4 β’ πΌ = (iEdgβπΊ) | |
7 | wlkcomp.1 | . . . 4 β’ πΉ = (1st βπ) | |
8 | wlkcomp.2 | . . . 4 β’ π = (2nd βπ) | |
9 | 5, 6, 7, 8 | wlkcomp 28885 | . . 3 β’ ((πΊ β V β§ π β (V Γ V)) β (π β (WalksβπΊ) β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ)))))) |
10 | 9 | biimpcd 248 | . 2 β’ (π β (WalksβπΊ) β ((πΊ β V β§ π β (V Γ V)) β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ)))))) |
11 | 1, 4, 10 | mp2and 697 | 1 β’ (π β (WalksβπΊ) β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 if-wif 1061 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 Vcvv 3474 β wss 3948 {csn 4628 {cpr 4630 class class class wbr 5148 Γ cxp 5674 dom cdm 5676 βΆwf 6539 βcfv 6543 (class class class)co 7408 1st c1st 7972 2nd c2nd 7973 0cc0 11109 1c1 11110 + caddc 11112 ...cfz 13483 ..^cfzo 13626 β―chash 14289 Word cword 14463 Vtxcvtx 28253 iEdgciedg 28254 Walkscwlks 28850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ifp 1062 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-hash 14290 df-word 14464 df-wlks 28853 |
This theorem is referenced by: wlkelwrd 28887 |
Copyright terms: Public domain | W3C validator |