MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkcompim Structured version   Visualization version   GIF version

Theorem wlkcompim 29398
Description: Implications for the properties of the components of a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 2-Jan-2021.)
Hypotheses
Ref Expression
wlkcomp.v 𝑉 = (Vtxβ€˜πΊ)
wlkcomp.i 𝐼 = (iEdgβ€˜πΊ)
wlkcomp.1 𝐹 = (1st β€˜π‘Š)
wlkcomp.2 𝑃 = (2nd β€˜π‘Š)
Assertion
Ref Expression
wlkcompim (π‘Š ∈ (Walksβ€˜πΊ) β†’ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘˜)))))
Distinct variable groups:   π‘˜,𝐹   π‘˜,𝐺   𝑃,π‘˜
Allowed substitution hints:   𝐼(π‘˜)   𝑉(π‘˜)   π‘Š(π‘˜)

Proof of Theorem wlkcompim
StepHypRef Expression
1 elfvex 6923 . 2 (π‘Š ∈ (Walksβ€˜πΊ) β†’ 𝐺 ∈ V)
2 wlkcpr 29395 . . 3 (π‘Š ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š))
3 wlkvv 29393 . . 3 ((1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š) β†’ π‘Š ∈ (V Γ— V))
42, 3sylbi 216 . 2 (π‘Š ∈ (Walksβ€˜πΊ) β†’ π‘Š ∈ (V Γ— V))
5 wlkcomp.v . . . 4 𝑉 = (Vtxβ€˜πΊ)
6 wlkcomp.i . . . 4 𝐼 = (iEdgβ€˜πΊ)
7 wlkcomp.1 . . . 4 𝐹 = (1st β€˜π‘Š)
8 wlkcomp.2 . . . 4 𝑃 = (2nd β€˜π‘Š)
95, 6, 7, 8wlkcomp 29397 . . 3 ((𝐺 ∈ V ∧ π‘Š ∈ (V Γ— V)) β†’ (π‘Š ∈ (Walksβ€˜πΊ) ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘˜))))))
109biimpcd 248 . 2 (π‘Š ∈ (Walksβ€˜πΊ) β†’ ((𝐺 ∈ V ∧ π‘Š ∈ (V Γ— V)) β†’ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘˜))))))
111, 4, 10mp2and 696 1 (π‘Š ∈ (Walksβ€˜πΊ) β†’ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘˜)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395  if-wif 1059   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055  Vcvv 3468   βŠ† wss 3943  {csn 4623  {cpr 4625   class class class wbr 5141   Γ— cxp 5667  dom cdm 5669  βŸΆwf 6533  β€˜cfv 6537  (class class class)co 7405  1st c1st 7972  2nd c2nd 7973  0cc0 11112  1c1 11113   + caddc 11115  ...cfz 13490  ..^cfzo 13633  β™―chash 14295  Word cword 14470  Vtxcvtx 28764  iEdgciedg 28765  Walkscwlks 29362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1060  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-fzo 13634  df-hash 14296  df-word 14471  df-wlks 29365
This theorem is referenced by:  wlkelwrd  29399
  Copyright terms: Public domain W3C validator