Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ewlkinedg | Structured version Visualization version GIF version |
Description: The intersection (common vertices) of two adjacent edges in an s-walk of edges. (Contributed by AV, 4-Jan-2021.) |
Ref | Expression |
---|---|
ewlksfval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
ewlkinedg | ⊢ ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 𝐾 ∈ (1..^(♯‘𝐹))) → 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹‘𝐾))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ewlksfval.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | ewlkprop 27696 | . . 3 ⊢ (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))))) |
3 | fvoveq1 7241 | . . . . . . . . 9 ⊢ (𝑘 = 𝐾 → (𝐹‘(𝑘 − 1)) = (𝐹‘(𝐾 − 1))) | |
4 | 3 | fveq2d 6726 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (𝐼‘(𝐹‘(𝑘 − 1))) = (𝐼‘(𝐹‘(𝐾 − 1)))) |
5 | 2fveq3 6727 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘𝐾))) | |
6 | 4, 5 | ineq12d 4133 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))) = ((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹‘𝐾)))) |
7 | 6 | fveq2d 6726 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))) = (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹‘𝐾))))) |
8 | 7 | breq2d 5070 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))) ↔ 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹‘𝐾)))))) |
9 | 8 | rspccv 3539 | . . . 4 ⊢ (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))) → (𝐾 ∈ (1..^(♯‘𝐹)) → 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹‘𝐾)))))) |
10 | 9 | 3ad2ant3 1137 | . . 3 ⊢ (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))) → (𝐾 ∈ (1..^(♯‘𝐹)) → 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹‘𝐾)))))) |
11 | 2, 10 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝐺 EdgWalks 𝑆) → (𝐾 ∈ (1..^(♯‘𝐹)) → 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹‘𝐾)))))) |
12 | 11 | imp 410 | 1 ⊢ ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 𝐾 ∈ (1..^(♯‘𝐹))) → 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹‘𝐾))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 Vcvv 3413 ∩ cin 3870 class class class wbr 5058 dom cdm 5556 ‘cfv 6385 (class class class)co 7218 1c1 10735 ≤ cle 10873 − cmin 11067 ℕ0*cxnn0 12167 ..^cfzo 13243 ♯chash 13901 Word cword 14074 iEdgciedg 27093 EdgWalks cewlks 27688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-int 4865 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-om 7650 df-1st 7766 df-2nd 7767 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-1o 8207 df-er 8396 df-map 8515 df-en 8632 df-dom 8633 df-sdom 8634 df-fin 8635 df-card 9560 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-nn 11836 df-n0 12096 df-z 12182 df-uz 12444 df-fz 13101 df-fzo 13244 df-hash 13902 df-word 14075 df-ewlks 27691 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |