MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ewlkinedg Structured version   Visualization version   GIF version

Theorem ewlkinedg 27697
Description: The intersection (common vertices) of two adjacent edges in an s-walk of edges. (Contributed by AV, 4-Jan-2021.)
Hypothesis
Ref Expression
ewlksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
ewlkinedg ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 𝐾 ∈ (1..^(♯‘𝐹))) → 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹𝐾)))))

Proof of Theorem ewlkinedg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ewlksfval.i . . . 4 𝐼 = (iEdg‘𝐺)
21ewlkprop 27696 . . 3 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))))))
3 fvoveq1 7241 . . . . . . . . 9 (𝑘 = 𝐾 → (𝐹‘(𝑘 − 1)) = (𝐹‘(𝐾 − 1)))
43fveq2d 6726 . . . . . . . 8 (𝑘 = 𝐾 → (𝐼‘(𝐹‘(𝑘 − 1))) = (𝐼‘(𝐹‘(𝐾 − 1))))
5 2fveq3 6727 . . . . . . . 8 (𝑘 = 𝐾 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹𝐾)))
64, 5ineq12d 4133 . . . . . . 7 (𝑘 = 𝐾 → ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) = ((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹𝐾))))
76fveq2d 6726 . . . . . 6 (𝑘 = 𝐾 → (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))) = (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹𝐾)))))
87breq2d 5070 . . . . 5 (𝑘 = 𝐾 → (𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))) ↔ 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹𝐾))))))
98rspccv 3539 . . . 4 (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))) → (𝐾 ∈ (1..^(♯‘𝐹)) → 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹𝐾))))))
1093ad2ant3 1137 . . 3 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))))) → (𝐾 ∈ (1..^(♯‘𝐹)) → 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹𝐾))))))
112, 10syl 17 . 2 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → (𝐾 ∈ (1..^(♯‘𝐹)) → 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹𝐾))))))
1211imp 410 1 ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 𝐾 ∈ (1..^(♯‘𝐹))) → 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹𝐾)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  Vcvv 3413  cin 3870   class class class wbr 5058  dom cdm 5556  cfv 6385  (class class class)co 7218  1c1 10735  cle 10873  cmin 11067  0*cxnn0 12167  ..^cfzo 13243  chash 13901  Word cword 14074  iEdgciedg 27093   EdgWalks cewlks 27688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5184  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528  ax-cnex 10790  ax-resscn 10791  ax-1cn 10792  ax-icn 10793  ax-addcl 10794  ax-addrcl 10795  ax-mulcl 10796  ax-mulrcl 10797  ax-mulcom 10798  ax-addass 10799  ax-mulass 10800  ax-distr 10801  ax-i2m1 10802  ax-1ne0 10803  ax-1rid 10804  ax-rnegex 10805  ax-rrecex 10806  ax-cnre 10807  ax-pre-lttri 10808  ax-pre-lttrn 10809  ax-pre-ltadd 10810  ax-pre-mulgt0 10811
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-pss 3890  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-tp 4551  df-op 4553  df-uni 4825  df-int 4865  df-iun 4911  df-br 5059  df-opab 5121  df-mpt 5141  df-tr 5167  df-id 5460  df-eprel 5465  df-po 5473  df-so 5474  df-fr 5514  df-we 5516  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-pred 6165  df-ord 6221  df-on 6222  df-lim 6223  df-suc 6224  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-riota 7175  df-ov 7221  df-oprab 7222  df-mpo 7223  df-om 7650  df-1st 7766  df-2nd 7767  df-wrecs 8052  df-recs 8113  df-rdg 8151  df-1o 8207  df-er 8396  df-map 8515  df-en 8632  df-dom 8633  df-sdom 8634  df-fin 8635  df-card 9560  df-pnf 10874  df-mnf 10875  df-xr 10876  df-ltxr 10877  df-le 10878  df-sub 11069  df-neg 11070  df-nn 11836  df-n0 12096  df-z 12182  df-uz 12444  df-fz 13101  df-fzo 13244  df-hash 13902  df-word 14075  df-ewlks 27691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator