![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmvscaval | Structured version Visualization version GIF version |
Description: Coordinates of a scalar multiple with respect to a basis in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
frlmvscaval.y | โข ๐ = (๐ freeLMod ๐ผ) |
frlmvscaval.b | โข ๐ต = (Baseโ๐) |
frlmvscaval.k | โข ๐พ = (Baseโ๐ ) |
frlmvscaval.i | โข (๐ โ ๐ผ โ ๐) |
frlmvscaval.a | โข (๐ โ ๐ด โ ๐พ) |
frlmvscaval.x | โข (๐ โ ๐ โ ๐ต) |
frlmvscaval.j | โข (๐ โ ๐ฝ โ ๐ผ) |
frlmvscaval.v | โข โ = ( ยท๐ โ๐) |
frlmvscaval.t | โข ยท = (.rโ๐ ) |
Ref | Expression |
---|---|
frlmvscaval | โข (๐ โ ((๐ด โ ๐)โ๐ฝ) = (๐ด ยท (๐โ๐ฝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmvscaval.y | . . . 4 โข ๐ = (๐ freeLMod ๐ผ) | |
2 | frlmvscaval.b | . . . 4 โข ๐ต = (Baseโ๐) | |
3 | frlmvscaval.k | . . . 4 โข ๐พ = (Baseโ๐ ) | |
4 | frlmvscaval.i | . . . 4 โข (๐ โ ๐ผ โ ๐) | |
5 | frlmvscaval.a | . . . 4 โข (๐ โ ๐ด โ ๐พ) | |
6 | frlmvscaval.x | . . . 4 โข (๐ โ ๐ โ ๐ต) | |
7 | frlmvscaval.v | . . . 4 โข โ = ( ยท๐ โ๐) | |
8 | frlmvscaval.t | . . . 4 โข ยท = (.rโ๐ ) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | frlmvscafval 21312 | . . 3 โข (๐ โ (๐ด โ ๐) = ((๐ผ ร {๐ด}) โf ยท ๐)) |
10 | 9 | fveq1d 6890 | . 2 โข (๐ โ ((๐ด โ ๐)โ๐ฝ) = (((๐ผ ร {๐ด}) โf ยท ๐)โ๐ฝ)) |
11 | fnconstg 6776 | . . . 4 โข (๐ด โ ๐พ โ (๐ผ ร {๐ด}) Fn ๐ผ) | |
12 | 5, 11 | syl 17 | . . 3 โข (๐ โ (๐ผ ร {๐ด}) Fn ๐ผ) |
13 | 1, 3, 2 | frlmbasf 21306 | . . . . 5 โข ((๐ผ โ ๐ โง ๐ โ ๐ต) โ ๐:๐ผโถ๐พ) |
14 | 4, 6, 13 | syl2anc 584 | . . . 4 โข (๐ โ ๐:๐ผโถ๐พ) |
15 | 14 | ffnd 6715 | . . 3 โข (๐ โ ๐ Fn ๐ผ) |
16 | frlmvscaval.j | . . 3 โข (๐ โ ๐ฝ โ ๐ผ) | |
17 | fnfvof 7683 | . . 3 โข ((((๐ผ ร {๐ด}) Fn ๐ผ โง ๐ Fn ๐ผ) โง (๐ผ โ ๐ โง ๐ฝ โ ๐ผ)) โ (((๐ผ ร {๐ด}) โf ยท ๐)โ๐ฝ) = (((๐ผ ร {๐ด})โ๐ฝ) ยท (๐โ๐ฝ))) | |
18 | 12, 15, 4, 16, 17 | syl22anc 837 | . 2 โข (๐ โ (((๐ผ ร {๐ด}) โf ยท ๐)โ๐ฝ) = (((๐ผ ร {๐ด})โ๐ฝ) ยท (๐โ๐ฝ))) |
19 | fvconst2g 7199 | . . . 4 โข ((๐ด โ ๐พ โง ๐ฝ โ ๐ผ) โ ((๐ผ ร {๐ด})โ๐ฝ) = ๐ด) | |
20 | 5, 16, 19 | syl2anc 584 | . . 3 โข (๐ โ ((๐ผ ร {๐ด})โ๐ฝ) = ๐ด) |
21 | 20 | oveq1d 7420 | . 2 โข (๐ โ (((๐ผ ร {๐ด})โ๐ฝ) ยท (๐โ๐ฝ)) = (๐ด ยท (๐โ๐ฝ))) |
22 | 10, 18, 21 | 3eqtrd 2776 | 1 โข (๐ โ ((๐ด โ ๐)โ๐ฝ) = (๐ด ยท (๐โ๐ฝ))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 {csn 4627 ร cxp 5673 Fn wfn 6535 โถwf 6536 โcfv 6540 (class class class)co 7405 โf cof 7664 Basecbs 17140 .rcmulr 17194 ยท๐ cvsca 17197 freeLMod cfrlm 21292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-prds 17389 df-pws 17391 df-sra 20777 df-rgmod 20778 df-dsmm 21278 df-frlm 21293 |
This theorem is referenced by: frlmvscavalb 21316 frlmvplusgscavalb 21317 frlmphl 21327 frlmssuvc2 21341 frlmup1 21344 rrxvsca 24902 frlmsnic 41107 prjspnfv01 41362 prjspner1 41364 |
Copyright terms: Public domain | W3C validator |