![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmvscaval | Structured version Visualization version GIF version |
Description: Coordinates of a scalar multiple with respect to a basis in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
frlmvscaval.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmvscaval.b | ⊢ 𝐵 = (Base‘𝑌) |
frlmvscaval.k | ⊢ 𝐾 = (Base‘𝑅) |
frlmvscaval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmvscaval.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
frlmvscaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
frlmvscaval.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
frlmvscaval.v | ⊢ ∙ = ( ·𝑠 ‘𝑌) |
frlmvscaval.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
frlmvscaval | ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmvscaval.y | . . . 4 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
2 | frlmvscaval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
3 | frlmvscaval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
4 | frlmvscaval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | frlmvscaval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
6 | frlmvscaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | frlmvscaval.v | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑌) | |
8 | frlmvscaval.t | . . . 4 ⊢ · = (.r‘𝑅) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | frlmvscafval 21813 | . . 3 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
10 | 9 | fveq1d 6916 | . 2 ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽)) |
11 | fnconstg 6804 | . . . 4 ⊢ (𝐴 ∈ 𝐾 → (𝐼 × {𝐴}) Fn 𝐼) | |
12 | 5, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝐼 × {𝐴}) Fn 𝐼) |
13 | 1, 3, 2 | frlmbasf 21807 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋:𝐼⟶𝐾) |
14 | 4, 6, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑋:𝐼⟶𝐾) |
15 | 14 | ffnd 6745 | . . 3 ⊢ (𝜑 → 𝑋 Fn 𝐼) |
16 | frlmvscaval.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
17 | fnfvof 7721 | . . 3 ⊢ ((((𝐼 × {𝐴}) Fn 𝐼 ∧ 𝑋 Fn 𝐼) ∧ (𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼)) → (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽) = (((𝐼 × {𝐴})‘𝐽) · (𝑋‘𝐽))) | |
18 | 12, 15, 4, 16, 17 | syl22anc 839 | . 2 ⊢ (𝜑 → (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽) = (((𝐼 × {𝐴})‘𝐽) · (𝑋‘𝐽))) |
19 | fvconst2g 7229 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐽 ∈ 𝐼) → ((𝐼 × {𝐴})‘𝐽) = 𝐴) | |
20 | 5, 16, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐼 × {𝐴})‘𝐽) = 𝐴) |
21 | 20 | oveq1d 7453 | . 2 ⊢ (𝜑 → (((𝐼 × {𝐴})‘𝐽) · (𝑋‘𝐽)) = (𝐴 · (𝑋‘𝐽))) |
22 | 10, 18, 21 | 3eqtrd 2781 | 1 ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {csn 4634 × cxp 5691 Fn wfn 6564 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 ∘f cof 7702 Basecbs 17254 .rcmulr 17308 ·𝑠 cvsca 17311 freeLMod cfrlm 21793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-om 7895 df-1st 8022 df-2nd 8023 df-supp 8194 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-fsupp 9409 df-sup 9489 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-fz 13554 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-sca 17323 df-vsca 17324 df-ip 17325 df-tset 17326 df-ple 17327 df-ds 17329 df-hom 17331 df-cco 17332 df-0g 17497 df-prds 17503 df-pws 17505 df-sra 21199 df-rgmod 21200 df-dsmm 21779 df-frlm 21794 |
This theorem is referenced by: frlmvscavalb 21817 frlmvplusgscavalb 21818 frlmphl 21828 frlmssuvc2 21842 frlmup1 21845 rrxvsca 25453 frlmsnic 42543 prjspnfv01 42627 prjspner1 42629 |
Copyright terms: Public domain | W3C validator |