| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmvscaval | Structured version Visualization version GIF version | ||
| Description: Coordinates of a scalar multiple with respect to a basis in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| frlmvscaval.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| frlmvscaval.b | ⊢ 𝐵 = (Base‘𝑌) |
| frlmvscaval.k | ⊢ 𝐾 = (Base‘𝑅) |
| frlmvscaval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| frlmvscaval.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| frlmvscaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| frlmvscaval.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
| frlmvscaval.v | ⊢ ∙ = ( ·𝑠 ‘𝑌) |
| frlmvscaval.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| frlmvscaval | ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmvscaval.y | . . . 4 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
| 2 | frlmvscaval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
| 3 | frlmvscaval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 4 | frlmvscaval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | frlmvscaval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 6 | frlmvscaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | frlmvscaval.v | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑌) | |
| 8 | frlmvscaval.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | frlmvscafval 21740 | . . 3 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
| 10 | 9 | fveq1d 6888 | . 2 ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽)) |
| 11 | fnconstg 6776 | . . . 4 ⊢ (𝐴 ∈ 𝐾 → (𝐼 × {𝐴}) Fn 𝐼) | |
| 12 | 5, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝐼 × {𝐴}) Fn 𝐼) |
| 13 | 1, 3, 2 | frlmbasf 21734 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋:𝐼⟶𝐾) |
| 14 | 4, 6, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑋:𝐼⟶𝐾) |
| 15 | 14 | ffnd 6717 | . . 3 ⊢ (𝜑 → 𝑋 Fn 𝐼) |
| 16 | frlmvscaval.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
| 17 | fnfvof 7696 | . . 3 ⊢ ((((𝐼 × {𝐴}) Fn 𝐼 ∧ 𝑋 Fn 𝐼) ∧ (𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼)) → (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽) = (((𝐼 × {𝐴})‘𝐽) · (𝑋‘𝐽))) | |
| 18 | 12, 15, 4, 16, 17 | syl22anc 838 | . 2 ⊢ (𝜑 → (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽) = (((𝐼 × {𝐴})‘𝐽) · (𝑋‘𝐽))) |
| 19 | fvconst2g 7204 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐽 ∈ 𝐼) → ((𝐼 × {𝐴})‘𝐽) = 𝐴) | |
| 20 | 5, 16, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐼 × {𝐴})‘𝐽) = 𝐴) |
| 21 | 20 | oveq1d 7428 | . 2 ⊢ (𝜑 → (((𝐼 × {𝐴})‘𝐽) · (𝑋‘𝐽)) = (𝐴 · (𝑋‘𝐽))) |
| 22 | 10, 18, 21 | 3eqtrd 2773 | 1 ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {csn 4606 × cxp 5663 Fn wfn 6536 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ∘f cof 7677 Basecbs 17229 .rcmulr 17274 ·𝑠 cvsca 17277 freeLMod cfrlm 21720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-sup 9464 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-hom 17297 df-cco 17298 df-0g 17457 df-prds 17463 df-pws 17465 df-sra 21140 df-rgmod 21141 df-dsmm 21706 df-frlm 21721 |
| This theorem is referenced by: frlmvscavalb 21744 frlmvplusgscavalb 21745 frlmphl 21755 frlmssuvc2 21769 frlmup1 21772 rrxvsca 25364 frlmsnic 42513 prjspnfv01 42597 prjspner1 42599 |
| Copyright terms: Public domain | W3C validator |