![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmvscaval | Structured version Visualization version GIF version |
Description: Coordinates of a scalar multiple with respect to a basis in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
frlmvscaval.y | โข ๐ = (๐ freeLMod ๐ผ) |
frlmvscaval.b | โข ๐ต = (Baseโ๐) |
frlmvscaval.k | โข ๐พ = (Baseโ๐ ) |
frlmvscaval.i | โข (๐ โ ๐ผ โ ๐) |
frlmvscaval.a | โข (๐ โ ๐ด โ ๐พ) |
frlmvscaval.x | โข (๐ โ ๐ โ ๐ต) |
frlmvscaval.j | โข (๐ โ ๐ฝ โ ๐ผ) |
frlmvscaval.v | โข โ = ( ยท๐ โ๐) |
frlmvscaval.t | โข ยท = (.rโ๐ ) |
Ref | Expression |
---|---|
frlmvscaval | โข (๐ โ ((๐ด โ ๐)โ๐ฝ) = (๐ด ยท (๐โ๐ฝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmvscaval.y | . . . 4 โข ๐ = (๐ freeLMod ๐ผ) | |
2 | frlmvscaval.b | . . . 4 โข ๐ต = (Baseโ๐) | |
3 | frlmvscaval.k | . . . 4 โข ๐พ = (Baseโ๐ ) | |
4 | frlmvscaval.i | . . . 4 โข (๐ โ ๐ผ โ ๐) | |
5 | frlmvscaval.a | . . . 4 โข (๐ โ ๐ด โ ๐พ) | |
6 | frlmvscaval.x | . . . 4 โข (๐ โ ๐ โ ๐ต) | |
7 | frlmvscaval.v | . . . 4 โข โ = ( ยท๐ โ๐) | |
8 | frlmvscaval.t | . . . 4 โข ยท = (.rโ๐ ) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | frlmvscafval 21702 | . . 3 โข (๐ โ (๐ด โ ๐) = ((๐ผ ร {๐ด}) โf ยท ๐)) |
10 | 9 | fveq1d 6893 | . 2 โข (๐ โ ((๐ด โ ๐)โ๐ฝ) = (((๐ผ ร {๐ด}) โf ยท ๐)โ๐ฝ)) |
11 | fnconstg 6779 | . . . 4 โข (๐ด โ ๐พ โ (๐ผ ร {๐ด}) Fn ๐ผ) | |
12 | 5, 11 | syl 17 | . . 3 โข (๐ โ (๐ผ ร {๐ด}) Fn ๐ผ) |
13 | 1, 3, 2 | frlmbasf 21696 | . . . . 5 โข ((๐ผ โ ๐ โง ๐ โ ๐ต) โ ๐:๐ผโถ๐พ) |
14 | 4, 6, 13 | syl2anc 582 | . . . 4 โข (๐ โ ๐:๐ผโถ๐พ) |
15 | 14 | ffnd 6717 | . . 3 โข (๐ โ ๐ Fn ๐ผ) |
16 | frlmvscaval.j | . . 3 โข (๐ โ ๐ฝ โ ๐ผ) | |
17 | fnfvof 7698 | . . 3 โข ((((๐ผ ร {๐ด}) Fn ๐ผ โง ๐ Fn ๐ผ) โง (๐ผ โ ๐ โง ๐ฝ โ ๐ผ)) โ (((๐ผ ร {๐ด}) โf ยท ๐)โ๐ฝ) = (((๐ผ ร {๐ด})โ๐ฝ) ยท (๐โ๐ฝ))) | |
18 | 12, 15, 4, 16, 17 | syl22anc 837 | . 2 โข (๐ โ (((๐ผ ร {๐ด}) โf ยท ๐)โ๐ฝ) = (((๐ผ ร {๐ด})โ๐ฝ) ยท (๐โ๐ฝ))) |
19 | fvconst2g 7209 | . . . 4 โข ((๐ด โ ๐พ โง ๐ฝ โ ๐ผ) โ ((๐ผ ร {๐ด})โ๐ฝ) = ๐ด) | |
20 | 5, 16, 19 | syl2anc 582 | . . 3 โข (๐ โ ((๐ผ ร {๐ด})โ๐ฝ) = ๐ด) |
21 | 20 | oveq1d 7430 | . 2 โข (๐ โ (((๐ผ ร {๐ด})โ๐ฝ) ยท (๐โ๐ฝ)) = (๐ด ยท (๐โ๐ฝ))) |
22 | 10, 18, 21 | 3eqtrd 2769 | 1 โข (๐ โ ((๐ด โ ๐)โ๐ฝ) = (๐ด ยท (๐โ๐ฝ))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1533 โ wcel 2098 {csn 4624 ร cxp 5670 Fn wfn 6537 โถwf 6538 โcfv 6542 (class class class)co 7415 โf cof 7679 Basecbs 17177 .rcmulr 17231 ยท๐ cvsca 17234 freeLMod cfrlm 21682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-om 7868 df-1st 7989 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-ixp 8913 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fsupp 9384 df-sup 9463 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-fz 13515 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-ip 17248 df-tset 17249 df-ple 17250 df-ds 17252 df-hom 17254 df-cco 17255 df-0g 17420 df-prds 17426 df-pws 17428 df-sra 21060 df-rgmod 21061 df-dsmm 21668 df-frlm 21683 |
This theorem is referenced by: frlmvscavalb 21706 frlmvplusgscavalb 21707 frlmphl 21717 frlmssuvc2 21731 frlmup1 21734 rrxvsca 25338 frlmsnic 41825 prjspnfv01 42112 prjspner1 42114 |
Copyright terms: Public domain | W3C validator |