![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmvscaval | Structured version Visualization version GIF version |
Description: Coordinates of a scalar multiple with respect to a basis in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
frlmvscaval.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmvscaval.b | ⊢ 𝐵 = (Base‘𝑌) |
frlmvscaval.k | ⊢ 𝐾 = (Base‘𝑅) |
frlmvscaval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmvscaval.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
frlmvscaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
frlmvscaval.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
frlmvscaval.v | ⊢ ∙ = ( ·𝑠 ‘𝑌) |
frlmvscaval.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
frlmvscaval | ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmvscaval.y | . . . 4 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
2 | frlmvscaval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
3 | frlmvscaval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
4 | frlmvscaval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | frlmvscaval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
6 | frlmvscaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | frlmvscaval.v | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑌) | |
8 | frlmvscaval.t | . . . 4 ⊢ · = (.r‘𝑅) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | frlmvscafval 21811 | . . 3 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
10 | 9 | fveq1d 6924 | . 2 ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽)) |
11 | fnconstg 6811 | . . . 4 ⊢ (𝐴 ∈ 𝐾 → (𝐼 × {𝐴}) Fn 𝐼) | |
12 | 5, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝐼 × {𝐴}) Fn 𝐼) |
13 | 1, 3, 2 | frlmbasf 21805 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋:𝐼⟶𝐾) |
14 | 4, 6, 13 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝑋:𝐼⟶𝐾) |
15 | 14 | ffnd 6750 | . . 3 ⊢ (𝜑 → 𝑋 Fn 𝐼) |
16 | frlmvscaval.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
17 | fnfvof 7733 | . . 3 ⊢ ((((𝐼 × {𝐴}) Fn 𝐼 ∧ 𝑋 Fn 𝐼) ∧ (𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼)) → (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽) = (((𝐼 × {𝐴})‘𝐽) · (𝑋‘𝐽))) | |
18 | 12, 15, 4, 16, 17 | syl22anc 838 | . 2 ⊢ (𝜑 → (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽) = (((𝐼 × {𝐴})‘𝐽) · (𝑋‘𝐽))) |
19 | fvconst2g 7241 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐽 ∈ 𝐼) → ((𝐼 × {𝐴})‘𝐽) = 𝐴) | |
20 | 5, 16, 19 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((𝐼 × {𝐴})‘𝐽) = 𝐴) |
21 | 20 | oveq1d 7465 | . 2 ⊢ (𝜑 → (((𝐼 × {𝐴})‘𝐽) · (𝑋‘𝐽)) = (𝐴 · (𝑋‘𝐽))) |
22 | 10, 18, 21 | 3eqtrd 2784 | 1 ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {csn 4648 × cxp 5698 Fn wfn 6570 ⟶wf 6571 ‘cfv 6575 (class class class)co 7450 ∘f cof 7714 Basecbs 17260 .rcmulr 17314 ·𝑠 cvsca 17317 freeLMod cfrlm 21791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-of 7716 df-om 7906 df-1st 8032 df-2nd 8033 df-supp 8204 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-er 8765 df-map 8888 df-ixp 8958 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-fsupp 9434 df-sup 9513 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-uz 12906 df-fz 13570 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-sca 17329 df-vsca 17330 df-ip 17331 df-tset 17332 df-ple 17333 df-ds 17335 df-hom 17337 df-cco 17338 df-0g 17503 df-prds 17509 df-pws 17511 df-sra 21197 df-rgmod 21198 df-dsmm 21777 df-frlm 21792 |
This theorem is referenced by: frlmvscavalb 21815 frlmvplusgscavalb 21816 frlmphl 21826 frlmssuvc2 21840 frlmup1 21843 rrxvsca 25449 frlmsnic 42497 prjspnfv01 42581 prjspner1 42583 |
Copyright terms: Public domain | W3C validator |