| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmvscaval | Structured version Visualization version GIF version | ||
| Description: Coordinates of a scalar multiple with respect to a basis in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| frlmvscaval.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| frlmvscaval.b | ⊢ 𝐵 = (Base‘𝑌) |
| frlmvscaval.k | ⊢ 𝐾 = (Base‘𝑅) |
| frlmvscaval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| frlmvscaval.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| frlmvscaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| frlmvscaval.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
| frlmvscaval.v | ⊢ ∙ = ( ·𝑠 ‘𝑌) |
| frlmvscaval.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| frlmvscaval | ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmvscaval.y | . . . 4 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
| 2 | frlmvscaval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
| 3 | frlmvscaval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 4 | frlmvscaval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | frlmvscaval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 6 | frlmvscaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | frlmvscaval.v | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑌) | |
| 8 | frlmvscaval.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | frlmvscafval 21708 | . . 3 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
| 10 | 9 | fveq1d 6842 | . 2 ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽)) |
| 11 | fnconstg 6730 | . . . 4 ⊢ (𝐴 ∈ 𝐾 → (𝐼 × {𝐴}) Fn 𝐼) | |
| 12 | 5, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝐼 × {𝐴}) Fn 𝐼) |
| 13 | 1, 3, 2 | frlmbasf 21702 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋:𝐼⟶𝐾) |
| 14 | 4, 6, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑋:𝐼⟶𝐾) |
| 15 | 14 | ffnd 6671 | . . 3 ⊢ (𝜑 → 𝑋 Fn 𝐼) |
| 16 | frlmvscaval.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
| 17 | fnfvof 7650 | . . 3 ⊢ ((((𝐼 × {𝐴}) Fn 𝐼 ∧ 𝑋 Fn 𝐼) ∧ (𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼)) → (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽) = (((𝐼 × {𝐴})‘𝐽) · (𝑋‘𝐽))) | |
| 18 | 12, 15, 4, 16, 17 | syl22anc 838 | . 2 ⊢ (𝜑 → (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽) = (((𝐼 × {𝐴})‘𝐽) · (𝑋‘𝐽))) |
| 19 | fvconst2g 7158 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐽 ∈ 𝐼) → ((𝐼 × {𝐴})‘𝐽) = 𝐴) | |
| 20 | 5, 16, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐼 × {𝐴})‘𝐽) = 𝐴) |
| 21 | 20 | oveq1d 7384 | . 2 ⊢ (𝜑 → (((𝐼 × {𝐴})‘𝐽) · (𝑋‘𝐽)) = (𝐴 · (𝑋‘𝐽))) |
| 22 | 10, 18, 21 | 3eqtrd 2768 | 1 ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4585 × cxp 5629 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 Basecbs 17155 .rcmulr 17197 ·𝑠 cvsca 17200 freeLMod cfrlm 21688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-prds 17386 df-pws 17388 df-sra 21112 df-rgmod 21113 df-dsmm 21674 df-frlm 21689 |
| This theorem is referenced by: frlmvscavalb 21712 frlmvplusgscavalb 21713 frlmphl 21723 frlmssuvc2 21737 frlmup1 21740 rrxvsca 25327 frlmsnic 42521 prjspnfv01 42605 prjspner1 42607 |
| Copyright terms: Public domain | W3C validator |