![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmvplusgvalc | Structured version Visualization version GIF version |
Description: Coordinates of a sum with respect to a basis in a free module. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
frlmvplusgvalc.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmvplusgvalc.b | ⊢ 𝐵 = (Base‘𝐹) |
frlmvplusgvalc.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
frlmvplusgvalc.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmvplusgvalc.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
frlmvplusgvalc.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
frlmvplusgvalc.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
frlmvplusgvalc.a | ⊢ + = (+g‘𝑅) |
frlmvplusgvalc.p | ⊢ ✚ = (+g‘𝐹) |
Ref | Expression |
---|---|
frlmvplusgvalc | ⊢ (𝜑 → ((𝑋 ✚ 𝑌)‘𝐽) = ((𝑋‘𝐽) + (𝑌‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmvplusgvalc.f | . . . 4 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | frlmvplusgvalc.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
3 | frlmvplusgvalc.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
4 | frlmvplusgvalc.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | frlmvplusgvalc.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | frlmvplusgvalc.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | frlmvplusgvalc.a | . . . 4 ⊢ + = (+g‘𝑅) | |
8 | frlmvplusgvalc.p | . . . 4 ⊢ ✚ = (+g‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | frlmplusgval 21685 | . . 3 ⊢ (𝜑 → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) |
10 | 9 | fveq1d 6893 | . 2 ⊢ (𝜑 → ((𝑋 ✚ 𝑌)‘𝐽) = ((𝑋 ∘f + 𝑌)‘𝐽)) |
11 | eqid 2727 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
12 | 1, 11, 2 | frlmbasmap 21680 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑m 𝐼)) |
13 | 4, 5, 12 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ((Base‘𝑅) ↑m 𝐼)) |
14 | fvexd 6906 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) ∈ V) | |
15 | 14, 4 | elmapd 8850 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑋:𝐼⟶(Base‘𝑅))) |
16 | 13, 15 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝑋:𝐼⟶(Base‘𝑅)) |
17 | 16 | ffnd 6717 | . . 3 ⊢ (𝜑 → 𝑋 Fn 𝐼) |
18 | 1, 11, 2 | frlmbasmap 21680 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝐼)) |
19 | 4, 6, 18 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ((Base‘𝑅) ↑m 𝐼)) |
20 | 14, 4 | elmapd 8850 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑌:𝐼⟶(Base‘𝑅))) |
21 | 19, 20 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝑌:𝐼⟶(Base‘𝑅)) |
22 | 21 | ffnd 6717 | . . 3 ⊢ (𝜑 → 𝑌 Fn 𝐼) |
23 | frlmvplusgvalc.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
24 | fnfvof 7696 | . . 3 ⊢ (((𝑋 Fn 𝐼 ∧ 𝑌 Fn 𝐼) ∧ (𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼)) → ((𝑋 ∘f + 𝑌)‘𝐽) = ((𝑋‘𝐽) + (𝑌‘𝐽))) | |
25 | 17, 22, 4, 23, 24 | syl22anc 838 | . 2 ⊢ (𝜑 → ((𝑋 ∘f + 𝑌)‘𝐽) = ((𝑋‘𝐽) + (𝑌‘𝐽))) |
26 | 10, 25 | eqtrd 2767 | 1 ⊢ (𝜑 → ((𝑋 ✚ 𝑌)‘𝐽) = ((𝑋‘𝐽) + (𝑌‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3469 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ∘f cof 7677 ↑m cmap 8836 Basecbs 17171 +gcplusg 17224 freeLMod cfrlm 21667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8838 df-ixp 8908 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-sup 9457 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-fz 13509 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-hom 17248 df-cco 17249 df-0g 17414 df-prds 17420 df-pws 17422 df-sra 21047 df-rgmod 21048 df-dsmm 21653 df-frlm 21668 |
This theorem is referenced by: frlmplusgvalb 21690 frlmsnic 41692 |
Copyright terms: Public domain | W3C validator |