MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmvplusgvalc Structured version   Visualization version   GIF version

Theorem frlmvplusgvalc 21812
Description: Coordinates of a sum with respect to a basis in a free module. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
frlmvplusgvalc.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmvplusgvalc.b 𝐵 = (Base‘𝐹)
frlmvplusgvalc.r (𝜑𝑅𝑉)
frlmvplusgvalc.i (𝜑𝐼𝑊)
frlmvplusgvalc.x (𝜑𝑋𝐵)
frlmvplusgvalc.y (𝜑𝑌𝐵)
frlmvplusgvalc.j (𝜑𝐽𝐼)
frlmvplusgvalc.a + = (+g𝑅)
frlmvplusgvalc.p = (+g𝐹)
Assertion
Ref Expression
frlmvplusgvalc (𝜑 → ((𝑋 𝑌)‘𝐽) = ((𝑋𝐽) + (𝑌𝐽)))

Proof of Theorem frlmvplusgvalc
StepHypRef Expression
1 frlmvplusgvalc.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
2 frlmvplusgvalc.b . . . 4 𝐵 = (Base‘𝐹)
3 frlmvplusgvalc.r . . . 4 (𝜑𝑅𝑉)
4 frlmvplusgvalc.i . . . 4 (𝜑𝐼𝑊)
5 frlmvplusgvalc.x . . . 4 (𝜑𝑋𝐵)
6 frlmvplusgvalc.y . . . 4 (𝜑𝑌𝐵)
7 frlmvplusgvalc.a . . . 4 + = (+g𝑅)
8 frlmvplusgvalc.p . . . 4 = (+g𝐹)
91, 2, 3, 4, 5, 6, 7, 8frlmplusgval 21809 . . 3 (𝜑 → (𝑋 𝑌) = (𝑋f + 𝑌))
109fveq1d 6924 . 2 (𝜑 → ((𝑋 𝑌)‘𝐽) = ((𝑋f + 𝑌)‘𝐽))
11 eqid 2740 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
121, 11, 2frlmbasmap 21804 . . . . . 6 ((𝐼𝑊𝑋𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑m 𝐼))
134, 5, 12syl2anc 583 . . . . 5 (𝜑𝑋 ∈ ((Base‘𝑅) ↑m 𝐼))
14 fvexd 6937 . . . . . 6 (𝜑 → (Base‘𝑅) ∈ V)
1514, 4elmapd 8900 . . . . 5 (𝜑 → (𝑋 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑋:𝐼⟶(Base‘𝑅)))
1613, 15mpbid 232 . . . 4 (𝜑𝑋:𝐼⟶(Base‘𝑅))
1716ffnd 6750 . . 3 (𝜑𝑋 Fn 𝐼)
181, 11, 2frlmbasmap 21804 . . . . . 6 ((𝐼𝑊𝑌𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝐼))
194, 6, 18syl2anc 583 . . . . 5 (𝜑𝑌 ∈ ((Base‘𝑅) ↑m 𝐼))
2014, 4elmapd 8900 . . . . 5 (𝜑 → (𝑌 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑌:𝐼⟶(Base‘𝑅)))
2119, 20mpbid 232 . . . 4 (𝜑𝑌:𝐼⟶(Base‘𝑅))
2221ffnd 6750 . . 3 (𝜑𝑌 Fn 𝐼)
23 frlmvplusgvalc.j . . 3 (𝜑𝐽𝐼)
24 fnfvof 7733 . . 3 (((𝑋 Fn 𝐼𝑌 Fn 𝐼) ∧ (𝐼𝑊𝐽𝐼)) → ((𝑋f + 𝑌)‘𝐽) = ((𝑋𝐽) + (𝑌𝐽)))
2517, 22, 4, 23, 24syl22anc 838 . 2 (𝜑 → ((𝑋f + 𝑌)‘𝐽) = ((𝑋𝐽) + (𝑌𝐽)))
2610, 25eqtrd 2780 1 (𝜑 → ((𝑋 𝑌)‘𝐽) = ((𝑋𝐽) + (𝑌𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488   Fn wfn 6570  wf 6571  cfv 6575  (class class class)co 7450  f cof 7714  m cmap 8886  Basecbs 17260  +gcplusg 17313   freeLMod cfrlm 21791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-of 7716  df-om 7906  df-1st 8032  df-2nd 8033  df-supp 8204  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-er 8765  df-map 8888  df-ixp 8958  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-fsupp 9434  df-sup 9513  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-8 12364  df-9 12365  df-n0 12556  df-z 12642  df-dec 12761  df-uz 12906  df-fz 13570  df-struct 17196  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-ress 17290  df-plusg 17326  df-mulr 17327  df-sca 17329  df-vsca 17330  df-ip 17331  df-tset 17332  df-ple 17333  df-ds 17335  df-hom 17337  df-cco 17338  df-0g 17503  df-prds 17509  df-pws 17511  df-sra 21197  df-rgmod 21198  df-dsmm 21777  df-frlm 21792
This theorem is referenced by:  frlmplusgvalb  21814  frlmsnic  42497
  Copyright terms: Public domain W3C validator