MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmvplusgvalc Structured version   Visualization version   GIF version

Theorem frlmvplusgvalc 21741
Description: Coordinates of a sum with respect to a basis in a free module. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
frlmvplusgvalc.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmvplusgvalc.b 𝐵 = (Base‘𝐹)
frlmvplusgvalc.r (𝜑𝑅𝑉)
frlmvplusgvalc.i (𝜑𝐼𝑊)
frlmvplusgvalc.x (𝜑𝑋𝐵)
frlmvplusgvalc.y (𝜑𝑌𝐵)
frlmvplusgvalc.j (𝜑𝐽𝐼)
frlmvplusgvalc.a + = (+g𝑅)
frlmvplusgvalc.p = (+g𝐹)
Assertion
Ref Expression
frlmvplusgvalc (𝜑 → ((𝑋 𝑌)‘𝐽) = ((𝑋𝐽) + (𝑌𝐽)))

Proof of Theorem frlmvplusgvalc
StepHypRef Expression
1 frlmvplusgvalc.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
2 frlmvplusgvalc.b . . . 4 𝐵 = (Base‘𝐹)
3 frlmvplusgvalc.r . . . 4 (𝜑𝑅𝑉)
4 frlmvplusgvalc.i . . . 4 (𝜑𝐼𝑊)
5 frlmvplusgvalc.x . . . 4 (𝜑𝑋𝐵)
6 frlmvplusgvalc.y . . . 4 (𝜑𝑌𝐵)
7 frlmvplusgvalc.a . . . 4 + = (+g𝑅)
8 frlmvplusgvalc.p . . . 4 = (+g𝐹)
91, 2, 3, 4, 5, 6, 7, 8frlmplusgval 21738 . . 3 (𝜑 → (𝑋 𝑌) = (𝑋f + 𝑌))
109fveq1d 6888 . 2 (𝜑 → ((𝑋 𝑌)‘𝐽) = ((𝑋f + 𝑌)‘𝐽))
11 eqid 2734 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
121, 11, 2frlmbasmap 21733 . . . . . 6 ((𝐼𝑊𝑋𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑m 𝐼))
134, 5, 12syl2anc 584 . . . . 5 (𝜑𝑋 ∈ ((Base‘𝑅) ↑m 𝐼))
14 fvexd 6901 . . . . . 6 (𝜑 → (Base‘𝑅) ∈ V)
1514, 4elmapd 8862 . . . . 5 (𝜑 → (𝑋 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑋:𝐼⟶(Base‘𝑅)))
1613, 15mpbid 232 . . . 4 (𝜑𝑋:𝐼⟶(Base‘𝑅))
1716ffnd 6717 . . 3 (𝜑𝑋 Fn 𝐼)
181, 11, 2frlmbasmap 21733 . . . . . 6 ((𝐼𝑊𝑌𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝐼))
194, 6, 18syl2anc 584 . . . . 5 (𝜑𝑌 ∈ ((Base‘𝑅) ↑m 𝐼))
2014, 4elmapd 8862 . . . . 5 (𝜑 → (𝑌 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑌:𝐼⟶(Base‘𝑅)))
2119, 20mpbid 232 . . . 4 (𝜑𝑌:𝐼⟶(Base‘𝑅))
2221ffnd 6717 . . 3 (𝜑𝑌 Fn 𝐼)
23 frlmvplusgvalc.j . . 3 (𝜑𝐽𝐼)
24 fnfvof 7696 . . 3 (((𝑋 Fn 𝐼𝑌 Fn 𝐼) ∧ (𝐼𝑊𝐽𝐼)) → ((𝑋f + 𝑌)‘𝐽) = ((𝑋𝐽) + (𝑌𝐽)))
2517, 22, 4, 23, 24syl22anc 838 . 2 (𝜑 → ((𝑋f + 𝑌)‘𝐽) = ((𝑋𝐽) + (𝑌𝐽)))
2610, 25eqtrd 2769 1 (𝜑 → ((𝑋 𝑌)‘𝐽) = ((𝑋𝐽) + (𝑌𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  f cof 7677  m cmap 8848  Basecbs 17229  +gcplusg 17273   freeLMod cfrlm 21720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-hom 17297  df-cco 17298  df-0g 17457  df-prds 17463  df-pws 17465  df-sra 21140  df-rgmod 21141  df-dsmm 21706  df-frlm 21721
This theorem is referenced by:  frlmplusgvalb  21743  frlmsnic  42513
  Copyright terms: Public domain W3C validator