![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmvplusgvalc | Structured version Visualization version GIF version |
Description: Coordinates of a sum with respect to a basis in a free module. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
frlmvplusgvalc.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmvplusgvalc.b | ⊢ 𝐵 = (Base‘𝐹) |
frlmvplusgvalc.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
frlmvplusgvalc.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmvplusgvalc.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
frlmvplusgvalc.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
frlmvplusgvalc.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
frlmvplusgvalc.a | ⊢ + = (+g‘𝑅) |
frlmvplusgvalc.p | ⊢ ✚ = (+g‘𝐹) |
Ref | Expression |
---|---|
frlmvplusgvalc | ⊢ (𝜑 → ((𝑋 ✚ 𝑌)‘𝐽) = ((𝑋‘𝐽) + (𝑌‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmvplusgvalc.f | . . . 4 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | frlmvplusgvalc.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
3 | frlmvplusgvalc.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
4 | frlmvplusgvalc.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | frlmvplusgvalc.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | frlmvplusgvalc.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | frlmvplusgvalc.a | . . . 4 ⊢ + = (+g‘𝑅) | |
8 | frlmvplusgvalc.p | . . . 4 ⊢ ✚ = (+g‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | frlmplusgval 21697 | . . 3 ⊢ (𝜑 → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) |
10 | 9 | fveq1d 6892 | . 2 ⊢ (𝜑 → ((𝑋 ✚ 𝑌)‘𝐽) = ((𝑋 ∘f + 𝑌)‘𝐽)) |
11 | eqid 2725 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
12 | 1, 11, 2 | frlmbasmap 21692 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑m 𝐼)) |
13 | 4, 5, 12 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ((Base‘𝑅) ↑m 𝐼)) |
14 | fvexd 6905 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) ∈ V) | |
15 | 14, 4 | elmapd 8852 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑋:𝐼⟶(Base‘𝑅))) |
16 | 13, 15 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝑋:𝐼⟶(Base‘𝑅)) |
17 | 16 | ffnd 6718 | . . 3 ⊢ (𝜑 → 𝑋 Fn 𝐼) |
18 | 1, 11, 2 | frlmbasmap 21692 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝐼)) |
19 | 4, 6, 18 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ((Base‘𝑅) ↑m 𝐼)) |
20 | 14, 4 | elmapd 8852 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑌:𝐼⟶(Base‘𝑅))) |
21 | 19, 20 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝑌:𝐼⟶(Base‘𝑅)) |
22 | 21 | ffnd 6718 | . . 3 ⊢ (𝜑 → 𝑌 Fn 𝐼) |
23 | frlmvplusgvalc.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
24 | fnfvof 7696 | . . 3 ⊢ (((𝑋 Fn 𝐼 ∧ 𝑌 Fn 𝐼) ∧ (𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼)) → ((𝑋 ∘f + 𝑌)‘𝐽) = ((𝑋‘𝐽) + (𝑌‘𝐽))) | |
25 | 17, 22, 4, 23, 24 | syl22anc 837 | . 2 ⊢ (𝜑 → ((𝑋 ∘f + 𝑌)‘𝐽) = ((𝑋‘𝐽) + (𝑌‘𝐽))) |
26 | 10, 25 | eqtrd 2765 | 1 ⊢ (𝜑 → ((𝑋 ✚ 𝑌)‘𝐽) = ((𝑋‘𝐽) + (𝑌‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3463 Fn wfn 6538 ⟶wf 6539 ‘cfv 6543 (class class class)co 7413 ∘f cof 7677 ↑m cmap 8838 Basecbs 17174 +gcplusg 17227 freeLMod cfrlm 21679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7866 df-1st 7987 df-2nd 7988 df-supp 8159 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9381 df-sup 9460 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17417 df-prds 17423 df-pws 17425 df-sra 21057 df-rgmod 21058 df-dsmm 21665 df-frlm 21680 |
This theorem is referenced by: frlmplusgvalb 21702 frlmsnic 41822 |
Copyright terms: Public domain | W3C validator |