Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmvplusgvalc | Structured version Visualization version GIF version |
Description: Coordinates of a sum with respect to a basis in a free module. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
frlmvplusgvalc.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmvplusgvalc.b | ⊢ 𝐵 = (Base‘𝐹) |
frlmvplusgvalc.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
frlmvplusgvalc.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmvplusgvalc.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
frlmvplusgvalc.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
frlmvplusgvalc.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
frlmvplusgvalc.a | ⊢ + = (+g‘𝑅) |
frlmvplusgvalc.p | ⊢ ✚ = (+g‘𝐹) |
Ref | Expression |
---|---|
frlmvplusgvalc | ⊢ (𝜑 → ((𝑋 ✚ 𝑌)‘𝐽) = ((𝑋‘𝐽) + (𝑌‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmvplusgvalc.f | . . . 4 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | frlmvplusgvalc.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
3 | frlmvplusgvalc.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
4 | frlmvplusgvalc.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | frlmvplusgvalc.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | frlmvplusgvalc.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | frlmvplusgvalc.a | . . . 4 ⊢ + = (+g‘𝑅) | |
8 | frlmvplusgvalc.p | . . . 4 ⊢ ✚ = (+g‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | frlmplusgval 21077 | . . 3 ⊢ (𝜑 → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) |
10 | 9 | fveq1d 6827 | . 2 ⊢ (𝜑 → ((𝑋 ✚ 𝑌)‘𝐽) = ((𝑋 ∘f + 𝑌)‘𝐽)) |
11 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
12 | 1, 11, 2 | frlmbasmap 21072 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑m 𝐼)) |
13 | 4, 5, 12 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ((Base‘𝑅) ↑m 𝐼)) |
14 | fvexd 6840 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) ∈ V) | |
15 | 14, 4 | elmapd 8700 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑋:𝐼⟶(Base‘𝑅))) |
16 | 13, 15 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝑋:𝐼⟶(Base‘𝑅)) |
17 | 16 | ffnd 6652 | . . 3 ⊢ (𝜑 → 𝑋 Fn 𝐼) |
18 | 1, 11, 2 | frlmbasmap 21072 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝐼)) |
19 | 4, 6, 18 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ((Base‘𝑅) ↑m 𝐼)) |
20 | 14, 4 | elmapd 8700 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑌:𝐼⟶(Base‘𝑅))) |
21 | 19, 20 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝑌:𝐼⟶(Base‘𝑅)) |
22 | 21 | ffnd 6652 | . . 3 ⊢ (𝜑 → 𝑌 Fn 𝐼) |
23 | frlmvplusgvalc.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
24 | fnfvof 7612 | . . 3 ⊢ (((𝑋 Fn 𝐼 ∧ 𝑌 Fn 𝐼) ∧ (𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼)) → ((𝑋 ∘f + 𝑌)‘𝐽) = ((𝑋‘𝐽) + (𝑌‘𝐽))) | |
25 | 17, 22, 4, 23, 24 | syl22anc 836 | . 2 ⊢ (𝜑 → ((𝑋 ∘f + 𝑌)‘𝐽) = ((𝑋‘𝐽) + (𝑌‘𝐽))) |
26 | 10, 25 | eqtrd 2776 | 1 ⊢ (𝜑 → ((𝑋 ✚ 𝑌)‘𝐽) = ((𝑋‘𝐽) + (𝑌‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 Fn wfn 6474 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 ∘f cof 7593 ↑m cmap 8686 Basecbs 17009 +gcplusg 17059 freeLMod cfrlm 21059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-ixp 8757 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fsupp 9227 df-sup 9299 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-fz 13341 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-hom 17083 df-cco 17084 df-0g 17249 df-prds 17255 df-pws 17257 df-sra 20540 df-rgmod 20541 df-dsmm 21045 df-frlm 21060 |
This theorem is referenced by: frlmplusgvalb 21082 frlmsnic 40531 |
Copyright terms: Public domain | W3C validator |