MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmvplusgvalc Structured version   Visualization version   GIF version

Theorem frlmvplusgvalc 21688
Description: Coordinates of a sum with respect to a basis in a free module. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
frlmvplusgvalc.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmvplusgvalc.b 𝐵 = (Base‘𝐹)
frlmvplusgvalc.r (𝜑𝑅𝑉)
frlmvplusgvalc.i (𝜑𝐼𝑊)
frlmvplusgvalc.x (𝜑𝑋𝐵)
frlmvplusgvalc.y (𝜑𝑌𝐵)
frlmvplusgvalc.j (𝜑𝐽𝐼)
frlmvplusgvalc.a + = (+g𝑅)
frlmvplusgvalc.p = (+g𝐹)
Assertion
Ref Expression
frlmvplusgvalc (𝜑 → ((𝑋 𝑌)‘𝐽) = ((𝑋𝐽) + (𝑌𝐽)))

Proof of Theorem frlmvplusgvalc
StepHypRef Expression
1 frlmvplusgvalc.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
2 frlmvplusgvalc.b . . . 4 𝐵 = (Base‘𝐹)
3 frlmvplusgvalc.r . . . 4 (𝜑𝑅𝑉)
4 frlmvplusgvalc.i . . . 4 (𝜑𝐼𝑊)
5 frlmvplusgvalc.x . . . 4 (𝜑𝑋𝐵)
6 frlmvplusgvalc.y . . . 4 (𝜑𝑌𝐵)
7 frlmvplusgvalc.a . . . 4 + = (+g𝑅)
8 frlmvplusgvalc.p . . . 4 = (+g𝐹)
91, 2, 3, 4, 5, 6, 7, 8frlmplusgval 21685 . . 3 (𝜑 → (𝑋 𝑌) = (𝑋f + 𝑌))
109fveq1d 6893 . 2 (𝜑 → ((𝑋 𝑌)‘𝐽) = ((𝑋f + 𝑌)‘𝐽))
11 eqid 2727 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
121, 11, 2frlmbasmap 21680 . . . . . 6 ((𝐼𝑊𝑋𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑m 𝐼))
134, 5, 12syl2anc 583 . . . . 5 (𝜑𝑋 ∈ ((Base‘𝑅) ↑m 𝐼))
14 fvexd 6906 . . . . . 6 (𝜑 → (Base‘𝑅) ∈ V)
1514, 4elmapd 8850 . . . . 5 (𝜑 → (𝑋 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑋:𝐼⟶(Base‘𝑅)))
1613, 15mpbid 231 . . . 4 (𝜑𝑋:𝐼⟶(Base‘𝑅))
1716ffnd 6717 . . 3 (𝜑𝑋 Fn 𝐼)
181, 11, 2frlmbasmap 21680 . . . . . 6 ((𝐼𝑊𝑌𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝐼))
194, 6, 18syl2anc 583 . . . . 5 (𝜑𝑌 ∈ ((Base‘𝑅) ↑m 𝐼))
2014, 4elmapd 8850 . . . . 5 (𝜑 → (𝑌 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑌:𝐼⟶(Base‘𝑅)))
2119, 20mpbid 231 . . . 4 (𝜑𝑌:𝐼⟶(Base‘𝑅))
2221ffnd 6717 . . 3 (𝜑𝑌 Fn 𝐼)
23 frlmvplusgvalc.j . . 3 (𝜑𝐽𝐼)
24 fnfvof 7696 . . 3 (((𝑋 Fn 𝐼𝑌 Fn 𝐼) ∧ (𝐼𝑊𝐽𝐼)) → ((𝑋f + 𝑌)‘𝐽) = ((𝑋𝐽) + (𝑌𝐽)))
2517, 22, 4, 23, 24syl22anc 838 . 2 (𝜑 → ((𝑋f + 𝑌)‘𝐽) = ((𝑋𝐽) + (𝑌𝐽)))
2610, 25eqtrd 2767 1 (𝜑 → ((𝑋 𝑌)‘𝐽) = ((𝑋𝐽) + (𝑌𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3469   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  f cof 7677  m cmap 8836  Basecbs 17171  +gcplusg 17224   freeLMod cfrlm 21667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-hom 17248  df-cco 17249  df-0g 17414  df-prds 17420  df-pws 17422  df-sra 21047  df-rgmod 21048  df-dsmm 21653  df-frlm 21668
This theorem is referenced by:  frlmplusgvalb  21690  frlmsnic  41692
  Copyright terms: Public domain W3C validator