MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmvplusgvalc Structured version   Visualization version   GIF version

Theorem frlmvplusgvalc 21704
Description: Coordinates of a sum with respect to a basis in a free module. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
frlmvplusgvalc.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmvplusgvalc.b 𝐵 = (Base‘𝐹)
frlmvplusgvalc.r (𝜑𝑅𝑉)
frlmvplusgvalc.i (𝜑𝐼𝑊)
frlmvplusgvalc.x (𝜑𝑋𝐵)
frlmvplusgvalc.y (𝜑𝑌𝐵)
frlmvplusgvalc.j (𝜑𝐽𝐼)
frlmvplusgvalc.a + = (+g𝑅)
frlmvplusgvalc.p = (+g𝐹)
Assertion
Ref Expression
frlmvplusgvalc (𝜑 → ((𝑋 𝑌)‘𝐽) = ((𝑋𝐽) + (𝑌𝐽)))

Proof of Theorem frlmvplusgvalc
StepHypRef Expression
1 frlmvplusgvalc.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
2 frlmvplusgvalc.b . . . 4 𝐵 = (Base‘𝐹)
3 frlmvplusgvalc.r . . . 4 (𝜑𝑅𝑉)
4 frlmvplusgvalc.i . . . 4 (𝜑𝐼𝑊)
5 frlmvplusgvalc.x . . . 4 (𝜑𝑋𝐵)
6 frlmvplusgvalc.y . . . 4 (𝜑𝑌𝐵)
7 frlmvplusgvalc.a . . . 4 + = (+g𝑅)
8 frlmvplusgvalc.p . . . 4 = (+g𝐹)
91, 2, 3, 4, 5, 6, 7, 8frlmplusgval 21701 . . 3 (𝜑 → (𝑋 𝑌) = (𝑋f + 𝑌))
109fveq1d 6824 . 2 (𝜑 → ((𝑋 𝑌)‘𝐽) = ((𝑋f + 𝑌)‘𝐽))
11 eqid 2731 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
121, 11, 2frlmbasmap 21696 . . . . . 6 ((𝐼𝑊𝑋𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑m 𝐼))
134, 5, 12syl2anc 584 . . . . 5 (𝜑𝑋 ∈ ((Base‘𝑅) ↑m 𝐼))
14 fvexd 6837 . . . . . 6 (𝜑 → (Base‘𝑅) ∈ V)
1514, 4elmapd 8764 . . . . 5 (𝜑 → (𝑋 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑋:𝐼⟶(Base‘𝑅)))
1613, 15mpbid 232 . . . 4 (𝜑𝑋:𝐼⟶(Base‘𝑅))
1716ffnd 6652 . . 3 (𝜑𝑋 Fn 𝐼)
181, 11, 2frlmbasmap 21696 . . . . . 6 ((𝐼𝑊𝑌𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝐼))
194, 6, 18syl2anc 584 . . . . 5 (𝜑𝑌 ∈ ((Base‘𝑅) ↑m 𝐼))
2014, 4elmapd 8764 . . . . 5 (𝜑 → (𝑌 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑌:𝐼⟶(Base‘𝑅)))
2119, 20mpbid 232 . . . 4 (𝜑𝑌:𝐼⟶(Base‘𝑅))
2221ffnd 6652 . . 3 (𝜑𝑌 Fn 𝐼)
23 frlmvplusgvalc.j . . 3 (𝜑𝐽𝐼)
24 fnfvof 7627 . . 3 (((𝑋 Fn 𝐼𝑌 Fn 𝐼) ∧ (𝐼𝑊𝐽𝐼)) → ((𝑋f + 𝑌)‘𝐽) = ((𝑋𝐽) + (𝑌𝐽)))
2517, 22, 4, 23, 24syl22anc 838 . 2 (𝜑 → ((𝑋f + 𝑌)‘𝐽) = ((𝑋𝐽) + (𝑌𝐽)))
2610, 25eqtrd 2766 1 (𝜑 → ((𝑋 𝑌)‘𝐽) = ((𝑋𝐽) + (𝑌𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  m cmap 8750  Basecbs 17120  +gcplusg 17161   freeLMod cfrlm 21683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-sra 21107  df-rgmod 21108  df-dsmm 21669  df-frlm 21684
This theorem is referenced by:  frlmplusgvalb  21706  frlmsnic  42643
  Copyright terms: Public domain W3C validator