| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsmulval | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation builder for multiplication. (Contributed by SN, 27-Jul-2024.) |
| Ref | Expression |
|---|---|
| evlsaddval.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
| evlsaddval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑈) |
| evlsaddval.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evlsaddval.k | ⊢ 𝐾 = (Base‘𝑆) |
| evlsaddval.b | ⊢ 𝐵 = (Base‘𝑃) |
| evlsaddval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
| evlsaddval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlsaddval.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evlsaddval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| evlsaddval.m | ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) |
| evlsaddval.n | ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) |
| evlsmulval.g | ⊢ ∙ = (.r‘𝑃) |
| evlsmulval.f | ⊢ · = (.r‘𝑆) |
| Ref | Expression |
|---|---|
| evlsmulval | ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ∙ 𝑁))‘𝐴) = (𝑉 · 𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsaddval.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
| 2 | evlsaddval.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 3 | evlsaddval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 4 | evlsaddval.q | . . . . . 6 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
| 5 | evlsaddval.p | . . . . . 6 ⊢ 𝑃 = (𝐼 mPoly 𝑈) | |
| 6 | evlsaddval.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 7 | eqid 2733 | . . . . . 6 ⊢ (𝑆 ↑s (𝐾 ↑m 𝐼)) = (𝑆 ↑s (𝐾 ↑m 𝐼)) | |
| 8 | evlsaddval.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
| 9 | 4, 5, 6, 7, 8 | evlsrhm 22034 | . . . . 5 ⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 10 | 1, 2, 3, 9 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 11 | rhmrcl1 20403 | . . . 4 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑃 ∈ Ring) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 13 | evlsaddval.m | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) | |
| 14 | 13 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| 15 | evlsaddval.n | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) | |
| 16 | 15 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
| 17 | evlsaddval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 18 | evlsmulval.g | . . . 4 ⊢ ∙ = (.r‘𝑃) | |
| 19 | 17, 18 | ringcl 20176 | . . 3 ⊢ ((𝑃 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑀 ∙ 𝑁) ∈ 𝐵) |
| 20 | 12, 14, 16, 19 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑀 ∙ 𝑁) ∈ 𝐵) |
| 21 | eqid 2733 | . . . . . . 7 ⊢ (.r‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (.r‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
| 22 | 17, 18, 21 | rhmmul 20412 | . . . . . 6 ⊢ ((𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑄‘(𝑀 ∙ 𝑁)) = ((𝑄‘𝑀)(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁))) |
| 23 | 10, 14, 16, 22 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑄‘(𝑀 ∙ 𝑁)) = ((𝑄‘𝑀)(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁))) |
| 24 | eqid 2733 | . . . . . 6 ⊢ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
| 25 | ovexd 7390 | . . . . . 6 ⊢ (𝜑 → (𝐾 ↑m 𝐼) ∈ V) | |
| 26 | 17, 24 | rhmf 20411 | . . . . . . . 8 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 27 | 10, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 28 | 27, 14 | ffvelcdmd 7027 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝑀) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 29 | 27, 16 | ffvelcdmd 7027 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝑁) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 30 | evlsmulval.f | . . . . . 6 ⊢ · = (.r‘𝑆) | |
| 31 | 7, 24, 2, 25, 28, 29, 30, 21 | pwsmulrval 17403 | . . . . 5 ⊢ (𝜑 → ((𝑄‘𝑀)(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁)) = ((𝑄‘𝑀) ∘f · (𝑄‘𝑁))) |
| 32 | 23, 31 | eqtrd 2768 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑀 ∙ 𝑁)) = ((𝑄‘𝑀) ∘f · (𝑄‘𝑁))) |
| 33 | 32 | fveq1d 6833 | . . 3 ⊢ (𝜑 → ((𝑄‘(𝑀 ∙ 𝑁))‘𝐴) = (((𝑄‘𝑀) ∘f · (𝑄‘𝑁))‘𝐴)) |
| 34 | 7, 8, 24, 2, 25, 28 | pwselbas 17400 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑀):(𝐾 ↑m 𝐼)⟶𝐾) |
| 35 | 34 | ffnd 6660 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑀) Fn (𝐾 ↑m 𝐼)) |
| 36 | 7, 8, 24, 2, 25, 29 | pwselbas 17400 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑁):(𝐾 ↑m 𝐼)⟶𝐾) |
| 37 | 36 | ffnd 6660 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑁) Fn (𝐾 ↑m 𝐼)) |
| 38 | evlsaddval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 39 | fnfvof 7636 | . . . 4 ⊢ ((((𝑄‘𝑀) Fn (𝐾 ↑m 𝐼) ∧ (𝑄‘𝑁) Fn (𝐾 ↑m 𝐼)) ∧ ((𝐾 ↑m 𝐼) ∈ V ∧ 𝐴 ∈ (𝐾 ↑m 𝐼))) → (((𝑄‘𝑀) ∘f · (𝑄‘𝑁))‘𝐴) = (((𝑄‘𝑀)‘𝐴) · ((𝑄‘𝑁)‘𝐴))) | |
| 40 | 35, 37, 25, 38, 39 | syl22anc 838 | . . 3 ⊢ (𝜑 → (((𝑄‘𝑀) ∘f · (𝑄‘𝑁))‘𝐴) = (((𝑄‘𝑀)‘𝐴) · ((𝑄‘𝑁)‘𝐴))) |
| 41 | 13 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑀)‘𝐴) = 𝑉) |
| 42 | 15 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑁)‘𝐴) = 𝑊) |
| 43 | 41, 42 | oveq12d 7373 | . . 3 ⊢ (𝜑 → (((𝑄‘𝑀)‘𝐴) · ((𝑄‘𝑁)‘𝐴)) = (𝑉 · 𝑊)) |
| 44 | 33, 40, 43 | 3eqtrd 2772 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑀 ∙ 𝑁))‘𝐴) = (𝑉 · 𝑊)) |
| 45 | 20, 44 | jca 511 | 1 ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ∙ 𝑁))‘𝐴) = (𝑉 · 𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 ↑m cmap 8759 Basecbs 17127 ↾s cress 17148 .rcmulr 17169 ↑s cpws 17357 Ringcrg 20159 CRingccrg 20160 RingHom crh 20396 SubRingcsubrg 20493 mPoly cmpl 21853 evalSub ces 22018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-hom 17192 df-cco 17193 df-0g 17352 df-gsum 17353 df-prds 17358 df-pws 17360 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-ghm 19133 df-cntz 19237 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-srg 20113 df-ring 20161 df-cring 20162 df-rhm 20399 df-subrng 20470 df-subrg 20494 df-lmod 20804 df-lss 20874 df-lsp 20914 df-assa 21799 df-asp 21800 df-ascl 21801 df-psr 21856 df-mvr 21857 df-mpl 21858 df-evls 22020 |
| This theorem is referenced by: evlsmaprhm 42731 |
| Copyright terms: Public domain | W3C validator |