| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsmulval | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation builder for multiplication. (Contributed by SN, 27-Jul-2024.) |
| Ref | Expression |
|---|---|
| evlsaddval.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
| evlsaddval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑈) |
| evlsaddval.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evlsaddval.k | ⊢ 𝐾 = (Base‘𝑆) |
| evlsaddval.b | ⊢ 𝐵 = (Base‘𝑃) |
| evlsaddval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
| evlsaddval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlsaddval.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evlsaddval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| evlsaddval.m | ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) |
| evlsaddval.n | ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) |
| evlsmulval.g | ⊢ ∙ = (.r‘𝑃) |
| evlsmulval.f | ⊢ · = (.r‘𝑆) |
| Ref | Expression |
|---|---|
| evlsmulval | ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ∙ 𝑁))‘𝐴) = (𝑉 · 𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsaddval.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
| 2 | evlsaddval.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 3 | evlsaddval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 4 | evlsaddval.q | . . . . . 6 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
| 5 | evlsaddval.p | . . . . . 6 ⊢ 𝑃 = (𝐼 mPoly 𝑈) | |
| 6 | evlsaddval.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 7 | eqid 2734 | . . . . . 6 ⊢ (𝑆 ↑s (𝐾 ↑m 𝐼)) = (𝑆 ↑s (𝐾 ↑m 𝐼)) | |
| 8 | evlsaddval.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
| 9 | 4, 5, 6, 7, 8 | evlsrhm 22031 | . . . . 5 ⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 10 | 1, 2, 3, 9 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 11 | rhmrcl1 20421 | . . . 4 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑃 ∈ Ring) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 13 | evlsaddval.m | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) | |
| 14 | 13 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| 15 | evlsaddval.n | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) | |
| 16 | 15 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
| 17 | evlsaddval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 18 | evlsmulval.g | . . . 4 ⊢ ∙ = (.r‘𝑃) | |
| 19 | 17, 18 | ringcl 20195 | . . 3 ⊢ ((𝑃 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑀 ∙ 𝑁) ∈ 𝐵) |
| 20 | 12, 14, 16, 19 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝑀 ∙ 𝑁) ∈ 𝐵) |
| 21 | eqid 2734 | . . . . . . 7 ⊢ (.r‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (.r‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
| 22 | 17, 18, 21 | rhmmul 20431 | . . . . . 6 ⊢ ((𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑄‘(𝑀 ∙ 𝑁)) = ((𝑄‘𝑀)(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁))) |
| 23 | 10, 14, 16, 22 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → (𝑄‘(𝑀 ∙ 𝑁)) = ((𝑄‘𝑀)(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁))) |
| 24 | eqid 2734 | . . . . . 6 ⊢ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
| 25 | ovexd 7434 | . . . . . 6 ⊢ (𝜑 → (𝐾 ↑m 𝐼) ∈ V) | |
| 26 | 17, 24 | rhmf 20430 | . . . . . . . 8 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 27 | 10, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 28 | 27, 14 | ffvelcdmd 7071 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝑀) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 29 | 27, 16 | ffvelcdmd 7071 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝑁) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 30 | evlsmulval.f | . . . . . 6 ⊢ · = (.r‘𝑆) | |
| 31 | 7, 24, 2, 25, 28, 29, 30, 21 | pwsmulrval 17490 | . . . . 5 ⊢ (𝜑 → ((𝑄‘𝑀)(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁)) = ((𝑄‘𝑀) ∘f · (𝑄‘𝑁))) |
| 32 | 23, 31 | eqtrd 2769 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑀 ∙ 𝑁)) = ((𝑄‘𝑀) ∘f · (𝑄‘𝑁))) |
| 33 | 32 | fveq1d 6874 | . . 3 ⊢ (𝜑 → ((𝑄‘(𝑀 ∙ 𝑁))‘𝐴) = (((𝑄‘𝑀) ∘f · (𝑄‘𝑁))‘𝐴)) |
| 34 | 7, 8, 24, 2, 25, 28 | pwselbas 17488 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑀):(𝐾 ↑m 𝐼)⟶𝐾) |
| 35 | 34 | ffnd 6703 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑀) Fn (𝐾 ↑m 𝐼)) |
| 36 | 7, 8, 24, 2, 25, 29 | pwselbas 17488 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑁):(𝐾 ↑m 𝐼)⟶𝐾) |
| 37 | 36 | ffnd 6703 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑁) Fn (𝐾 ↑m 𝐼)) |
| 38 | evlsaddval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 39 | fnfvof 7682 | . . . 4 ⊢ ((((𝑄‘𝑀) Fn (𝐾 ↑m 𝐼) ∧ (𝑄‘𝑁) Fn (𝐾 ↑m 𝐼)) ∧ ((𝐾 ↑m 𝐼) ∈ V ∧ 𝐴 ∈ (𝐾 ↑m 𝐼))) → (((𝑄‘𝑀) ∘f · (𝑄‘𝑁))‘𝐴) = (((𝑄‘𝑀)‘𝐴) · ((𝑄‘𝑁)‘𝐴))) | |
| 40 | 35, 37, 25, 38, 39 | syl22anc 838 | . . 3 ⊢ (𝜑 → (((𝑄‘𝑀) ∘f · (𝑄‘𝑁))‘𝐴) = (((𝑄‘𝑀)‘𝐴) · ((𝑄‘𝑁)‘𝐴))) |
| 41 | 13 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑀)‘𝐴) = 𝑉) |
| 42 | 15 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑁)‘𝐴) = 𝑊) |
| 43 | 41, 42 | oveq12d 7417 | . . 3 ⊢ (𝜑 → (((𝑄‘𝑀)‘𝐴) · ((𝑄‘𝑁)‘𝐴)) = (𝑉 · 𝑊)) |
| 44 | 33, 40, 43 | 3eqtrd 2773 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑀 ∙ 𝑁))‘𝐴) = (𝑉 · 𝑊)) |
| 45 | 20, 44 | jca 511 | 1 ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ∙ 𝑁))‘𝐴) = (𝑉 · 𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3457 Fn wfn 6522 ⟶wf 6523 ‘cfv 6527 (class class class)co 7399 ∘f cof 7663 ↑m cmap 8834 Basecbs 17213 ↾s cress 17236 .rcmulr 17257 ↑s cpws 17445 Ringcrg 20178 CRingccrg 20179 RingHom crh 20414 SubRingcsubrg 20514 mPoly cmpl 21851 evalSub ces 22015 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-of 7665 df-ofr 7666 df-om 7856 df-1st 7982 df-2nd 7983 df-supp 8154 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-er 8713 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9368 df-sup 9448 df-oi 9516 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-fz 13514 df-fzo 13661 df-seq 14009 df-hash 14337 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-sca 17272 df-vsca 17273 df-ip 17274 df-tset 17275 df-ple 17276 df-ds 17278 df-hom 17280 df-cco 17281 df-0g 17440 df-gsum 17441 df-prds 17446 df-pws 17448 df-mre 17583 df-mrc 17584 df-acs 17586 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18746 df-submnd 18747 df-grp 18904 df-minusg 18905 df-sbg 18906 df-mulg 19036 df-subg 19091 df-ghm 19181 df-cntz 19285 df-cmn 19748 df-abl 19749 df-mgp 20086 df-rng 20098 df-ur 20127 df-srg 20132 df-ring 20180 df-cring 20181 df-rhm 20417 df-subrng 20491 df-subrg 20515 df-lmod 20804 df-lss 20874 df-lsp 20914 df-assa 21798 df-asp 21799 df-ascl 21800 df-psr 21854 df-mvr 21855 df-mpl 21856 df-evls 22017 |
| This theorem is referenced by: evlsmaprhm 42518 |
| Copyright terms: Public domain | W3C validator |