Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsmulval Structured version   Visualization version   GIF version

Theorem evlsmulval 42557
Description: Polynomial evaluation builder for multiplication. (Contributed by SN, 27-Jul-2024.)
Hypotheses
Ref Expression
evlsaddval.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsaddval.p 𝑃 = (𝐼 mPoly 𝑈)
evlsaddval.u 𝑈 = (𝑆s 𝑅)
evlsaddval.k 𝐾 = (Base‘𝑆)
evlsaddval.b 𝐵 = (Base‘𝑃)
evlsaddval.i (𝜑𝐼𝑍)
evlsaddval.s (𝜑𝑆 ∈ CRing)
evlsaddval.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsaddval.a (𝜑𝐴 ∈ (𝐾m 𝐼))
evlsaddval.m (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))
evlsaddval.n (𝜑 → (𝑁𝐵 ∧ ((𝑄𝑁)‘𝐴) = 𝑊))
evlsmulval.g = (.r𝑃)
evlsmulval.f · = (.r𝑆)
Assertion
Ref Expression
evlsmulval (𝜑 → ((𝑀 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 · 𝑊)))

Proof of Theorem evlsmulval
StepHypRef Expression
1 evlsaddval.i . . . . 5 (𝜑𝐼𝑍)
2 evlsaddval.s . . . . 5 (𝜑𝑆 ∈ CRing)
3 evlsaddval.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 evlsaddval.q . . . . . 6 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
5 evlsaddval.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑈)
6 evlsaddval.u . . . . . 6 𝑈 = (𝑆s 𝑅)
7 eqid 2729 . . . . . 6 (𝑆s (𝐾m 𝐼)) = (𝑆s (𝐾m 𝐼))
8 evlsaddval.k . . . . . 6 𝐾 = (Base‘𝑆)
94, 5, 6, 7, 8evlsrhm 21995 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))))
101, 2, 3, 9syl3anc 1373 . . . 4 (𝜑𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))))
11 rhmrcl1 20385 . . . 4 (𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))) → 𝑃 ∈ Ring)
1210, 11syl 17 . . 3 (𝜑𝑃 ∈ Ring)
13 evlsaddval.m . . . 4 (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))
1413simpld 494 . . 3 (𝜑𝑀𝐵)
15 evlsaddval.n . . . 4 (𝜑 → (𝑁𝐵 ∧ ((𝑄𝑁)‘𝐴) = 𝑊))
1615simpld 494 . . 3 (𝜑𝑁𝐵)
17 evlsaddval.b . . . 4 𝐵 = (Base‘𝑃)
18 evlsmulval.g . . . 4 = (.r𝑃)
1917, 18ringcl 20159 . . 3 ((𝑃 ∈ Ring ∧ 𝑀𝐵𝑁𝐵) → (𝑀 𝑁) ∈ 𝐵)
2012, 14, 16, 19syl3anc 1373 . 2 (𝜑 → (𝑀 𝑁) ∈ 𝐵)
21 eqid 2729 . . . . . . 7 (.r‘(𝑆s (𝐾m 𝐼))) = (.r‘(𝑆s (𝐾m 𝐼)))
2217, 18, 21rhmmul 20395 . . . . . 6 ((𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))) ∧ 𝑀𝐵𝑁𝐵) → (𝑄‘(𝑀 𝑁)) = ((𝑄𝑀)(.r‘(𝑆s (𝐾m 𝐼)))(𝑄𝑁)))
2310, 14, 16, 22syl3anc 1373 . . . . 5 (𝜑 → (𝑄‘(𝑀 𝑁)) = ((𝑄𝑀)(.r‘(𝑆s (𝐾m 𝐼)))(𝑄𝑁)))
24 eqid 2729 . . . . . 6 (Base‘(𝑆s (𝐾m 𝐼))) = (Base‘(𝑆s (𝐾m 𝐼)))
25 ovexd 7422 . . . . . 6 (𝜑 → (𝐾m 𝐼) ∈ V)
2617, 24rhmf 20394 . . . . . . . 8 (𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆s (𝐾m 𝐼))))
2710, 26syl 17 . . . . . . 7 (𝜑𝑄:𝐵⟶(Base‘(𝑆s (𝐾m 𝐼))))
2827, 14ffvelcdmd 7057 . . . . . 6 (𝜑 → (𝑄𝑀) ∈ (Base‘(𝑆s (𝐾m 𝐼))))
2927, 16ffvelcdmd 7057 . . . . . 6 (𝜑 → (𝑄𝑁) ∈ (Base‘(𝑆s (𝐾m 𝐼))))
30 evlsmulval.f . . . . . 6 · = (.r𝑆)
317, 24, 2, 25, 28, 29, 30, 21pwsmulrval 17454 . . . . 5 (𝜑 → ((𝑄𝑀)(.r‘(𝑆s (𝐾m 𝐼)))(𝑄𝑁)) = ((𝑄𝑀) ∘f · (𝑄𝑁)))
3223, 31eqtrd 2764 . . . 4 (𝜑 → (𝑄‘(𝑀 𝑁)) = ((𝑄𝑀) ∘f · (𝑄𝑁)))
3332fveq1d 6860 . . 3 (𝜑 → ((𝑄‘(𝑀 𝑁))‘𝐴) = (((𝑄𝑀) ∘f · (𝑄𝑁))‘𝐴))
347, 8, 24, 2, 25, 28pwselbas 17452 . . . . 5 (𝜑 → (𝑄𝑀):(𝐾m 𝐼)⟶𝐾)
3534ffnd 6689 . . . 4 (𝜑 → (𝑄𝑀) Fn (𝐾m 𝐼))
367, 8, 24, 2, 25, 29pwselbas 17452 . . . . 5 (𝜑 → (𝑄𝑁):(𝐾m 𝐼)⟶𝐾)
3736ffnd 6689 . . . 4 (𝜑 → (𝑄𝑁) Fn (𝐾m 𝐼))
38 evlsaddval.a . . . 4 (𝜑𝐴 ∈ (𝐾m 𝐼))
39 fnfvof 7670 . . . 4 ((((𝑄𝑀) Fn (𝐾m 𝐼) ∧ (𝑄𝑁) Fn (𝐾m 𝐼)) ∧ ((𝐾m 𝐼) ∈ V ∧ 𝐴 ∈ (𝐾m 𝐼))) → (((𝑄𝑀) ∘f · (𝑄𝑁))‘𝐴) = (((𝑄𝑀)‘𝐴) · ((𝑄𝑁)‘𝐴)))
4035, 37, 25, 38, 39syl22anc 838 . . 3 (𝜑 → (((𝑄𝑀) ∘f · (𝑄𝑁))‘𝐴) = (((𝑄𝑀)‘𝐴) · ((𝑄𝑁)‘𝐴)))
4113simprd 495 . . . 4 (𝜑 → ((𝑄𝑀)‘𝐴) = 𝑉)
4215simprd 495 . . . 4 (𝜑 → ((𝑄𝑁)‘𝐴) = 𝑊)
4341, 42oveq12d 7405 . . 3 (𝜑 → (((𝑄𝑀)‘𝐴) · ((𝑄𝑁)‘𝐴)) = (𝑉 · 𝑊))
4433, 40, 433eqtrd 2768 . 2 (𝜑 → ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 · 𝑊))
4520, 44jca 511 1 (𝜑 → ((𝑀 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 · 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799  Basecbs 17179  s cress 17200  .rcmulr 17221  s cpws 17409  Ringcrg 20142  CRingccrg 20143   RingHom crh 20378  SubRingcsubrg 20478   mPoly cmpl 21815   evalSub ces 21979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-evls 21981
This theorem is referenced by:  evlsmaprhm  42558
  Copyright terms: Public domain W3C validator