![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1addfv | Structured version Visualization version GIF version |
Description: A particular coefficient of an addition. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
coe1add.y | ⊢ 𝑌 = (Poly1‘𝑅) |
coe1add.b | ⊢ 𝐵 = (Base‘𝑌) |
coe1add.p | ⊢ ✚ = (+g‘𝑌) |
coe1add.q | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
coe1addfv | ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 ✚ 𝐺))‘𝑋) = (((coe1‘𝐹)‘𝑋) + ((coe1‘𝐺)‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1add.y | . . . . 5 ⊢ 𝑌 = (Poly1‘𝑅) | |
2 | coe1add.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
3 | coe1add.p | . . . . 5 ⊢ ✚ = (+g‘𝑌) | |
4 | coe1add.q | . . . . 5 ⊢ + = (+g‘𝑅) | |
5 | 1, 2, 3, 4 | coe1add 22192 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘f + (coe1‘𝐺))) |
6 | 5 | adantr 479 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘f + (coe1‘𝐺))) |
7 | 6 | fveq1d 6894 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 ✚ 𝐺))‘𝑋) = (((coe1‘𝐹) ∘f + (coe1‘𝐺))‘𝑋)) |
8 | eqid 2725 | . . . . . . 7 ⊢ (coe1‘𝐹) = (coe1‘𝐹) | |
9 | eqid 2725 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
10 | 8, 2, 1, 9 | coe1f 22139 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
11 | 10 | ffnd 6718 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹) Fn ℕ0) |
12 | 11 | 3ad2ant2 1131 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐹) Fn ℕ0) |
13 | 12 | adantr 479 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → (coe1‘𝐹) Fn ℕ0) |
14 | eqid 2725 | . . . . . . 7 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
15 | 14, 2, 1, 9 | coe1f 22139 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
16 | 15 | ffnd 6718 | . . . . 5 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺) Fn ℕ0) |
17 | 16 | 3ad2ant3 1132 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐺) Fn ℕ0) |
18 | 17 | adantr 479 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → (coe1‘𝐺) Fn ℕ0) |
19 | nn0ex 12508 | . . . 4 ⊢ ℕ0 ∈ V | |
20 | 19 | a1i 11 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → ℕ0 ∈ V) |
21 | simpr 483 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑋 ∈ ℕ0) | |
22 | fnfvof 7699 | . . 3 ⊢ ((((coe1‘𝐹) Fn ℕ0 ∧ (coe1‘𝐺) Fn ℕ0) ∧ (ℕ0 ∈ V ∧ 𝑋 ∈ ℕ0)) → (((coe1‘𝐹) ∘f + (coe1‘𝐺))‘𝑋) = (((coe1‘𝐹)‘𝑋) + ((coe1‘𝐺)‘𝑋))) | |
23 | 13, 18, 20, 21, 22 | syl22anc 837 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → (((coe1‘𝐹) ∘f + (coe1‘𝐺))‘𝑋) = (((coe1‘𝐹)‘𝑋) + ((coe1‘𝐺)‘𝑋))) |
24 | 7, 23 | eqtrd 2765 | 1 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 ✚ 𝐺))‘𝑋) = (((coe1‘𝐹)‘𝑋) + ((coe1‘𝐺)‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3463 Fn wfn 6538 ‘cfv 6543 (class class class)co 7416 ∘f cof 7680 ℕ0cn0 12502 Basecbs 17179 +gcplusg 17232 Ringcrg 20177 Poly1cpl1 22104 coe1cco1 22105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-ofr 7683 df-om 7869 df-1st 7991 df-2nd 7992 df-supp 8164 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-pm 8846 df-ixp 8915 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-fsupp 9386 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-fzo 13660 df-seq 13999 df-hash 14322 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-hom 17256 df-cco 17257 df-0g 17422 df-gsum 17423 df-prds 17428 df-pws 17430 df-mre 17565 df-mrc 17566 df-acs 17568 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-mhm 18739 df-submnd 18740 df-grp 18897 df-minusg 18898 df-mulg 19028 df-subg 19082 df-ghm 19172 df-cntz 19272 df-cmn 19741 df-abl 19742 df-mgp 20079 df-rng 20097 df-ur 20126 df-ring 20179 df-subrng 20487 df-subrg 20512 df-psr 21846 df-mpl 21848 df-opsr 21850 df-psr1 22107 df-ply1 22109 df-coe1 22110 |
This theorem is referenced by: coe1subfv 22194 coe1fzgsumdlem 22231 pm2mpghm 22736 deg1add 26057 hbtlem2 42613 |
Copyright terms: Public domain | W3C validator |