MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1addfv Structured version   Visualization version   GIF version

Theorem coe1addfv 22198
Description: A particular coefficient of an addition. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
coe1add.y 𝑌 = (Poly1𝑅)
coe1add.b 𝐵 = (Base‘𝑌)
coe1add.p = (+g𝑌)
coe1add.q + = (+g𝑅)
Assertion
Ref Expression
coe1addfv (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝑋) = (((coe1𝐹)‘𝑋) + ((coe1𝐺)‘𝑋)))

Proof of Theorem coe1addfv
StepHypRef Expression
1 coe1add.y . . . . 5 𝑌 = (Poly1𝑅)
2 coe1add.b . . . . 5 𝐵 = (Base‘𝑌)
3 coe1add.p . . . . 5 = (+g𝑌)
4 coe1add.q . . . . 5 + = (+g𝑅)
51, 2, 3, 4coe1add 22197 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = ((coe1𝐹) ∘f + (coe1𝐺)))
65adantr 480 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (coe1‘(𝐹 𝐺)) = ((coe1𝐹) ∘f + (coe1𝐺)))
76fveq1d 6833 . 2 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝑋) = (((coe1𝐹) ∘f + (coe1𝐺))‘𝑋))
8 eqid 2733 . . . . . . 7 (coe1𝐹) = (coe1𝐹)
9 eqid 2733 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
108, 2, 1, 9coe1f 22143 . . . . . 6 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
1110ffnd 6660 . . . . 5 (𝐹𝐵 → (coe1𝐹) Fn ℕ0)
12113ad2ant2 1134 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1𝐹) Fn ℕ0)
1312adantr 480 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (coe1𝐹) Fn ℕ0)
14 eqid 2733 . . . . . . 7 (coe1𝐺) = (coe1𝐺)
1514, 2, 1, 9coe1f 22143 . . . . . 6 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
1615ffnd 6660 . . . . 5 (𝐺𝐵 → (coe1𝐺) Fn ℕ0)
17163ad2ant3 1135 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1𝐺) Fn ℕ0)
1817adantr 480 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (coe1𝐺) Fn ℕ0)
19 nn0ex 12398 . . . 4 0 ∈ V
2019a1i 11 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ℕ0 ∈ V)
21 simpr 484 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑋 ∈ ℕ0)
22 fnfvof 7636 . . 3 ((((coe1𝐹) Fn ℕ0 ∧ (coe1𝐺) Fn ℕ0) ∧ (ℕ0 ∈ V ∧ 𝑋 ∈ ℕ0)) → (((coe1𝐹) ∘f + (coe1𝐺))‘𝑋) = (((coe1𝐹)‘𝑋) + ((coe1𝐺)‘𝑋)))
2313, 18, 20, 21, 22syl22anc 838 . 2 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (((coe1𝐹) ∘f + (coe1𝐺))‘𝑋) = (((coe1𝐹)‘𝑋) + ((coe1𝐺)‘𝑋)))
247, 23eqtrd 2768 1 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝑋) = (((coe1𝐹)‘𝑋) + ((coe1𝐺)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437   Fn wfn 6484  cfv 6489  (class class class)co 7355  f cof 7617  0cn0 12392  Basecbs 17127  +gcplusg 17168  Ringcrg 20159  Poly1cpl1 22108  coe1cco1 22109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-sup 9337  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916  df-hash 14245  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-hom 17192  df-cco 17193  df-0g 17352  df-gsum 17353  df-prds 17358  df-pws 17360  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-grp 18857  df-minusg 18858  df-mulg 18989  df-subg 19044  df-ghm 19133  df-cntz 19237  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-subrng 20470  df-subrg 20494  df-psr 21856  df-mpl 21858  df-opsr 21860  df-psr1 22111  df-ply1 22113  df-coe1 22114
This theorem is referenced by:  coe1subfv  22199  coe1fzgsumdlem  22238  pm2mpghm  22751  deg1add  26055  rtelextdg2lem  33811  cos9thpiminply  33873  hbtlem2  43281
  Copyright terms: Public domain W3C validator