| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evlmulval | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation builder for multiplication. (Contributed by SN, 18-Feb-2025.) |
| Ref | Expression |
|---|---|
| evlmulval.q | ⊢ 𝑄 = (𝐼 eval 𝑆) |
| evlmulval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑆) |
| evlmulval.k | ⊢ 𝐾 = (Base‘𝑆) |
| evlmulval.b | ⊢ 𝐵 = (Base‘𝑃) |
| evlmulval.g | ⊢ ∙ = (.r‘𝑃) |
| evlmulval.f | ⊢ · = (.r‘𝑆) |
| evlmulval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
| evlmulval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlmulval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| evlmulval.m | ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) |
| evlmulval.n | ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) |
| Ref | Expression |
|---|---|
| evlmulval | ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ∙ 𝑁))‘𝐴) = (𝑉 · 𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlmulval.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 2 | evlmulval.g | . . 3 ⊢ ∙ = (.r‘𝑃) | |
| 3 | evlmulval.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
| 4 | evlmulval.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 5 | evlmulval.q | . . . . . 6 ⊢ 𝑄 = (𝐼 eval 𝑆) | |
| 6 | evlmulval.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
| 7 | evlmulval.p | . . . . . 6 ⊢ 𝑃 = (𝐼 mPoly 𝑆) | |
| 8 | eqid 2733 | . . . . . 6 ⊢ (𝑆 ↑s (𝐾 ↑m 𝐼)) = (𝑆 ↑s (𝐾 ↑m 𝐼)) | |
| 9 | 5, 6, 7, 8 | evlrhm 22032 | . . . . 5 ⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing) → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 10 | 3, 4, 9 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 11 | rhmrcl1 20396 | . . . 4 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑃 ∈ Ring) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 13 | evlmulval.m | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) | |
| 14 | 13 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| 15 | evlmulval.n | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) | |
| 16 | 15 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
| 17 | 1, 2, 12, 14, 16 | ringcld 20180 | . 2 ⊢ (𝜑 → (𝑀 ∙ 𝑁) ∈ 𝐵) |
| 18 | eqid 2733 | . . . . . . 7 ⊢ (.r‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (.r‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
| 19 | 1, 2, 18 | rhmmul 20405 | . . . . . 6 ⊢ ((𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑄‘(𝑀 ∙ 𝑁)) = ((𝑄‘𝑀)(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁))) |
| 20 | 10, 14, 16, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑄‘(𝑀 ∙ 𝑁)) = ((𝑄‘𝑀)(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁))) |
| 21 | eqid 2733 | . . . . . 6 ⊢ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
| 22 | ovexd 7387 | . . . . . 6 ⊢ (𝜑 → (𝐾 ↑m 𝐼) ∈ V) | |
| 23 | 1, 21 | rhmf 20404 | . . . . . . . 8 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 24 | 10, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 25 | 24, 14 | ffvelcdmd 7024 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝑀) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 26 | 24, 16 | ffvelcdmd 7024 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝑁) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 27 | evlmulval.f | . . . . . 6 ⊢ · = (.r‘𝑆) | |
| 28 | 8, 21, 4, 22, 25, 26, 27, 18 | pwsmulrval 17397 | . . . . 5 ⊢ (𝜑 → ((𝑄‘𝑀)(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁)) = ((𝑄‘𝑀) ∘f · (𝑄‘𝑁))) |
| 29 | 20, 28 | eqtrd 2768 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑀 ∙ 𝑁)) = ((𝑄‘𝑀) ∘f · (𝑄‘𝑁))) |
| 30 | 29 | fveq1d 6830 | . . 3 ⊢ (𝜑 → ((𝑄‘(𝑀 ∙ 𝑁))‘𝐴) = (((𝑄‘𝑀) ∘f · (𝑄‘𝑁))‘𝐴)) |
| 31 | 8, 6, 21, 4, 22, 25 | pwselbas 17395 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑀):(𝐾 ↑m 𝐼)⟶𝐾) |
| 32 | 31 | ffnd 6657 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑀) Fn (𝐾 ↑m 𝐼)) |
| 33 | 8, 6, 21, 4, 22, 26 | pwselbas 17395 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑁):(𝐾 ↑m 𝐼)⟶𝐾) |
| 34 | 33 | ffnd 6657 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑁) Fn (𝐾 ↑m 𝐼)) |
| 35 | evlmulval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 36 | fnfvof 7633 | . . . 4 ⊢ ((((𝑄‘𝑀) Fn (𝐾 ↑m 𝐼) ∧ (𝑄‘𝑁) Fn (𝐾 ↑m 𝐼)) ∧ ((𝐾 ↑m 𝐼) ∈ V ∧ 𝐴 ∈ (𝐾 ↑m 𝐼))) → (((𝑄‘𝑀) ∘f · (𝑄‘𝑁))‘𝐴) = (((𝑄‘𝑀)‘𝐴) · ((𝑄‘𝑁)‘𝐴))) | |
| 37 | 32, 34, 22, 35, 36 | syl22anc 838 | . . 3 ⊢ (𝜑 → (((𝑄‘𝑀) ∘f · (𝑄‘𝑁))‘𝐴) = (((𝑄‘𝑀)‘𝐴) · ((𝑄‘𝑁)‘𝐴))) |
| 38 | 13 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑀)‘𝐴) = 𝑉) |
| 39 | 15 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑁)‘𝐴) = 𝑊) |
| 40 | 38, 39 | oveq12d 7370 | . . 3 ⊢ (𝜑 → (((𝑄‘𝑀)‘𝐴) · ((𝑄‘𝑁)‘𝐴)) = (𝑉 · 𝑊)) |
| 41 | 30, 37, 40 | 3eqtrd 2772 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑀 ∙ 𝑁))‘𝐴) = (𝑉 · 𝑊)) |
| 42 | 17, 41 | jca 511 | 1 ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ∙ 𝑁))‘𝐴) = (𝑉 · 𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ∘f cof 7614 ↑m cmap 8756 Basecbs 17122 .rcmulr 17164 ↑s cpws 17352 Ringcrg 20153 CRingccrg 20154 RingHom crh 20389 mPoly cmpl 21845 eval cevl 22009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-hom 17187 df-cco 17188 df-0g 17347 df-gsum 17348 df-prds 17353 df-pws 17355 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-srg 20107 df-ring 20155 df-cring 20156 df-rhm 20392 df-subrng 20463 df-subrg 20487 df-lmod 20797 df-lss 20867 df-lsp 20907 df-assa 21792 df-asp 21793 df-ascl 21794 df-psr 21848 df-mvr 21849 df-mpl 21850 df-evls 22010 df-evl 22011 |
| This theorem is referenced by: selvmul 42707 |
| Copyright terms: Public domain | W3C validator |