MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1muld Structured version   Visualization version   GIF version

Theorem evl1muld 22294
Description: Polynomial evaluation builder for multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
evl1addd.q 𝑂 = (eval1𝑅)
evl1addd.p 𝑃 = (Poly1𝑅)
evl1addd.b 𝐵 = (Base‘𝑅)
evl1addd.u 𝑈 = (Base‘𝑃)
evl1addd.1 (𝜑𝑅 ∈ CRing)
evl1addd.2 (𝜑𝑌𝐵)
evl1addd.3 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
evl1addd.4 (𝜑 → (𝑁𝑈 ∧ ((𝑂𝑁)‘𝑌) = 𝑊))
evl1muld.t = (.r𝑃)
evl1muld.s · = (.r𝑅)
Assertion
Ref Expression
evl1muld (𝜑 → ((𝑀 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉 · 𝑊)))

Proof of Theorem evl1muld
StepHypRef Expression
1 evl1addd.1 . . . . 5 (𝜑𝑅 ∈ CRing)
2 evl1addd.q . . . . . 6 𝑂 = (eval1𝑅)
3 evl1addd.p . . . . . 6 𝑃 = (Poly1𝑅)
4 eqid 2734 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
5 evl1addd.b . . . . . 6 𝐵 = (Base‘𝑅)
62, 3, 4, 5evl1rhm 22283 . . . . 5 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
71, 6syl 17 . . . 4 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
8 rhmrcl1 20443 . . . 4 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑃 ∈ Ring)
97, 8syl 17 . . 3 (𝜑𝑃 ∈ Ring)
10 evl1addd.3 . . . 4 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
1110simpld 494 . . 3 (𝜑𝑀𝑈)
12 evl1addd.4 . . . 4 (𝜑 → (𝑁𝑈 ∧ ((𝑂𝑁)‘𝑌) = 𝑊))
1312simpld 494 . . 3 (𝜑𝑁𝑈)
14 evl1addd.u . . . 4 𝑈 = (Base‘𝑃)
15 evl1muld.t . . . 4 = (.r𝑃)
1614, 15ringcl 20214 . . 3 ((𝑃 ∈ Ring ∧ 𝑀𝑈𝑁𝑈) → (𝑀 𝑁) ∈ 𝑈)
179, 11, 13, 16syl3anc 1372 . 2 (𝜑 → (𝑀 𝑁) ∈ 𝑈)
18 eqid 2734 . . . . . . 7 (.r‘(𝑅s 𝐵)) = (.r‘(𝑅s 𝐵))
1914, 15, 18rhmmul 20453 . . . . . 6 ((𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) ∧ 𝑀𝑈𝑁𝑈) → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀)(.r‘(𝑅s 𝐵))(𝑂𝑁)))
207, 11, 13, 19syl3anc 1372 . . . . 5 (𝜑 → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀)(.r‘(𝑅s 𝐵))(𝑂𝑁)))
21 eqid 2734 . . . . . 6 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
225fvexi 6899 . . . . . . 7 𝐵 ∈ V
2322a1i 11 . . . . . 6 (𝜑𝐵 ∈ V)
2414, 21rhmf 20452 . . . . . . . 8 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
257, 24syl 17 . . . . . . 7 (𝜑𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
2625, 11ffvelcdmd 7084 . . . . . 6 (𝜑 → (𝑂𝑀) ∈ (Base‘(𝑅s 𝐵)))
2725, 13ffvelcdmd 7084 . . . . . 6 (𝜑 → (𝑂𝑁) ∈ (Base‘(𝑅s 𝐵)))
28 evl1muld.s . . . . . 6 · = (.r𝑅)
294, 21, 1, 23, 26, 27, 28, 18pwsmulrval 17506 . . . . 5 (𝜑 → ((𝑂𝑀)(.r‘(𝑅s 𝐵))(𝑂𝑁)) = ((𝑂𝑀) ∘f · (𝑂𝑁)))
3020, 29eqtrd 2769 . . . 4 (𝜑 → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀) ∘f · (𝑂𝑁)))
3130fveq1d 6887 . . 3 (𝜑 → ((𝑂‘(𝑀 𝑁))‘𝑌) = (((𝑂𝑀) ∘f · (𝑂𝑁))‘𝑌))
324, 5, 21, 1, 23, 26pwselbas 17504 . . . . 5 (𝜑 → (𝑂𝑀):𝐵𝐵)
3332ffnd 6716 . . . 4 (𝜑 → (𝑂𝑀) Fn 𝐵)
344, 5, 21, 1, 23, 27pwselbas 17504 . . . . 5 (𝜑 → (𝑂𝑁):𝐵𝐵)
3534ffnd 6716 . . . 4 (𝜑 → (𝑂𝑁) Fn 𝐵)
36 evl1addd.2 . . . 4 (𝜑𝑌𝐵)
37 fnfvof 7695 . . . 4 ((((𝑂𝑀) Fn 𝐵 ∧ (𝑂𝑁) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑌𝐵)) → (((𝑂𝑀) ∘f · (𝑂𝑁))‘𝑌) = (((𝑂𝑀)‘𝑌) · ((𝑂𝑁)‘𝑌)))
3833, 35, 23, 36, 37syl22anc 838 . . 3 (𝜑 → (((𝑂𝑀) ∘f · (𝑂𝑁))‘𝑌) = (((𝑂𝑀)‘𝑌) · ((𝑂𝑁)‘𝑌)))
3910simprd 495 . . . 4 (𝜑 → ((𝑂𝑀)‘𝑌) = 𝑉)
4012simprd 495 . . . 4 (𝜑 → ((𝑂𝑁)‘𝑌) = 𝑊)
4139, 40oveq12d 7430 . . 3 (𝜑 → (((𝑂𝑀)‘𝑌) · ((𝑂𝑁)‘𝑌)) = (𝑉 · 𝑊))
4231, 38, 413eqtrd 2773 . 2 (𝜑 → ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉 · 𝑊))
4317, 42jca 511 1 (𝜑 → ((𝑀 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉 · 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7412  f cof 7676  Basecbs 17228  .rcmulr 17273  s cpws 17461  Ringcrg 20197  CRingccrg 20198   RingHom crh 20436  Poly1cpl1 22125  eval1ce1 22265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7678  df-ofr 7679  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8726  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9383  df-sup 9463  df-oi 9531  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-nn 12248  df-2 12310  df-3 12311  df-4 12312  df-5 12313  df-6 12314  df-7 12315  df-8 12316  df-9 12317  df-n0 12509  df-z 12596  df-dec 12716  df-uz 12860  df-fz 13529  df-fzo 13676  df-seq 14024  df-hash 14351  df-struct 17165  df-sets 17182  df-slot 17200  df-ndx 17212  df-base 17229  df-ress 17252  df-plusg 17285  df-mulr 17286  df-sca 17288  df-vsca 17289  df-ip 17290  df-tset 17291  df-ple 17292  df-ds 17294  df-hom 17296  df-cco 17297  df-0g 17456  df-gsum 17457  df-prds 17462  df-pws 17464  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18621  df-sgrp 18700  df-mnd 18716  df-mhm 18764  df-submnd 18765  df-grp 18922  df-minusg 18923  df-sbg 18924  df-mulg 19054  df-subg 19109  df-ghm 19199  df-cntz 19303  df-cmn 19767  df-abl 19768  df-mgp 20105  df-rng 20117  df-ur 20146  df-srg 20151  df-ring 20199  df-cring 20200  df-rhm 20439  df-subrng 20513  df-subrg 20537  df-lmod 20827  df-lss 20897  df-lsp 20937  df-assa 21826  df-asp 21827  df-ascl 21828  df-psr 21882  df-mvr 21883  df-mpl 21884  df-opsr 21886  df-evls 22045  df-evl 22046  df-psr1 22128  df-ply1 22130  df-evl1 22267
This theorem is referenced by:  evl1vsd  22295  evls1muld  22323  ply1mulrtss  33532  aks6d1c1p4  42046  evl1gprodd  42052  aks6d1c5lem2  42073
  Copyright terms: Public domain W3C validator