| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1muld | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation builder for multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| Ref | Expression |
|---|---|
| evl1addd.q | ⊢ 𝑂 = (eval1‘𝑅) |
| evl1addd.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| evl1addd.b | ⊢ 𝐵 = (Base‘𝑅) |
| evl1addd.u | ⊢ 𝑈 = (Base‘𝑃) |
| evl1addd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evl1addd.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| evl1addd.3 | ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) |
| evl1addd.4 | ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) |
| evl1muld.t | ⊢ ∙ = (.r‘𝑃) |
| evl1muld.s | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| evl1muld | ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1addd.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 2 | evl1addd.q | . . . . . 6 ⊢ 𝑂 = (eval1‘𝑅) | |
| 3 | evl1addd.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | eqid 2734 | . . . . . 6 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
| 5 | evl1addd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 2, 3, 4, 5 | evl1rhm 22283 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
| 7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
| 8 | rhmrcl1 20443 | . . . 4 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑃 ∈ Ring) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 10 | evl1addd.3 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) | |
| 11 | 10 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑈) |
| 12 | evl1addd.4 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) | |
| 13 | 12 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑈) |
| 14 | evl1addd.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
| 15 | evl1muld.t | . . . 4 ⊢ ∙ = (.r‘𝑃) | |
| 16 | 14, 15 | ringcl 20214 | . . 3 ⊢ ((𝑃 ∈ Ring ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑀 ∙ 𝑁) ∈ 𝑈) |
| 17 | 9, 11, 13, 16 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝑀 ∙ 𝑁) ∈ 𝑈) |
| 18 | eqid 2734 | . . . . . . 7 ⊢ (.r‘(𝑅 ↑s 𝐵)) = (.r‘(𝑅 ↑s 𝐵)) | |
| 19 | 14, 15, 18 | rhmmul 20453 | . . . . . 6 ⊢ ((𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑂‘(𝑀 ∙ 𝑁)) = ((𝑂‘𝑀)(.r‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
| 20 | 7, 11, 13, 19 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → (𝑂‘(𝑀 ∙ 𝑁)) = ((𝑂‘𝑀)(.r‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
| 21 | eqid 2734 | . . . . . 6 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
| 22 | 5 | fvexi 6899 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 23 | 22 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
| 24 | 14, 21 | rhmf 20452 | . . . . . . . 8 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
| 25 | 7, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
| 26 | 25, 11 | ffvelcdmd 7084 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑀) ∈ (Base‘(𝑅 ↑s 𝐵))) |
| 27 | 25, 13 | ffvelcdmd 7084 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑁) ∈ (Base‘(𝑅 ↑s 𝐵))) |
| 28 | evl1muld.s | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 29 | 4, 21, 1, 23, 26, 27, 28, 18 | pwsmulrval 17506 | . . . . 5 ⊢ (𝜑 → ((𝑂‘𝑀)(.r‘(𝑅 ↑s 𝐵))(𝑂‘𝑁)) = ((𝑂‘𝑀) ∘f · (𝑂‘𝑁))) |
| 30 | 20, 29 | eqtrd 2769 | . . . 4 ⊢ (𝜑 → (𝑂‘(𝑀 ∙ 𝑁)) = ((𝑂‘𝑀) ∘f · (𝑂‘𝑁))) |
| 31 | 30 | fveq1d 6887 | . . 3 ⊢ (𝜑 → ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (((𝑂‘𝑀) ∘f · (𝑂‘𝑁))‘𝑌)) |
| 32 | 4, 5, 21, 1, 23, 26 | pwselbas 17504 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑀):𝐵⟶𝐵) |
| 33 | 32 | ffnd 6716 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑀) Fn 𝐵) |
| 34 | 4, 5, 21, 1, 23, 27 | pwselbas 17504 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑁):𝐵⟶𝐵) |
| 35 | 34 | ffnd 6716 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑁) Fn 𝐵) |
| 36 | evl1addd.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 37 | fnfvof 7695 | . . . 4 ⊢ ((((𝑂‘𝑀) Fn 𝐵 ∧ (𝑂‘𝑁) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑌 ∈ 𝐵)) → (((𝑂‘𝑀) ∘f · (𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌) · ((𝑂‘𝑁)‘𝑌))) | |
| 38 | 33, 35, 23, 36, 37 | syl22anc 838 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀) ∘f · (𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌) · ((𝑂‘𝑁)‘𝑌))) |
| 39 | 10 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑌) = 𝑉) |
| 40 | 12 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑁)‘𝑌) = 𝑊) |
| 41 | 39, 40 | oveq12d 7430 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀)‘𝑌) · ((𝑂‘𝑁)‘𝑌)) = (𝑉 · 𝑊)) |
| 42 | 31, 38, 41 | 3eqtrd 2773 | . 2 ⊢ (𝜑 → ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊)) |
| 43 | 17, 42 | jca 511 | 1 ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 Fn wfn 6535 ⟶wf 6536 ‘cfv 6540 (class class class)co 7412 ∘f cof 7676 Basecbs 17228 .rcmulr 17273 ↑s cpws 17461 Ringcrg 20197 CRingccrg 20198 RingHom crh 20436 Poly1cpl1 22125 eval1ce1 22265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-ofr 7679 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8726 df-map 8849 df-pm 8850 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9383 df-sup 9463 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-z 12596 df-dec 12716 df-uz 12860 df-fz 13529 df-fzo 13676 df-seq 14024 df-hash 14351 df-struct 17165 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-mulr 17286 df-sca 17288 df-vsca 17289 df-ip 17290 df-tset 17291 df-ple 17292 df-ds 17294 df-hom 17296 df-cco 17297 df-0g 17456 df-gsum 17457 df-prds 17462 df-pws 17464 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-mhm 18764 df-submnd 18765 df-grp 18922 df-minusg 18923 df-sbg 18924 df-mulg 19054 df-subg 19109 df-ghm 19199 df-cntz 19303 df-cmn 19767 df-abl 19768 df-mgp 20105 df-rng 20117 df-ur 20146 df-srg 20151 df-ring 20199 df-cring 20200 df-rhm 20439 df-subrng 20513 df-subrg 20537 df-lmod 20827 df-lss 20897 df-lsp 20937 df-assa 21826 df-asp 21827 df-ascl 21828 df-psr 21882 df-mvr 21883 df-mpl 21884 df-opsr 21886 df-evls 22045 df-evl 22046 df-psr1 22128 df-ply1 22130 df-evl1 22267 |
| This theorem is referenced by: evl1vsd 22295 evls1muld 22323 ply1mulrtss 33532 aks6d1c1p4 42046 evl1gprodd 42052 aks6d1c5lem2 42073 |
| Copyright terms: Public domain | W3C validator |