Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evl1muld | Structured version Visualization version GIF version |
Description: Polynomial evaluation builder for multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
evl1addd.q | ⊢ 𝑂 = (eval1‘𝑅) |
evl1addd.p | ⊢ 𝑃 = (Poly1‘𝑅) |
evl1addd.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1addd.u | ⊢ 𝑈 = (Base‘𝑃) |
evl1addd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1addd.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
evl1addd.3 | ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) |
evl1addd.4 | ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) |
evl1muld.t | ⊢ ∙ = (.r‘𝑃) |
evl1muld.s | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
evl1muld | ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1addd.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
2 | evl1addd.q | . . . . . 6 ⊢ 𝑂 = (eval1‘𝑅) | |
3 | evl1addd.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | eqid 2758 | . . . . . 6 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
5 | evl1addd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 2, 3, 4, 5 | evl1rhm 21065 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
8 | rhmrcl1 19556 | . . . 4 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑃 ∈ Ring) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Ring) |
10 | evl1addd.3 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) | |
11 | 10 | simpld 498 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑈) |
12 | evl1addd.4 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) | |
13 | 12 | simpld 498 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑈) |
14 | evl1addd.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
15 | evl1muld.t | . . . 4 ⊢ ∙ = (.r‘𝑃) | |
16 | 14, 15 | ringcl 19396 | . . 3 ⊢ ((𝑃 ∈ Ring ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑀 ∙ 𝑁) ∈ 𝑈) |
17 | 9, 11, 13, 16 | syl3anc 1368 | . 2 ⊢ (𝜑 → (𝑀 ∙ 𝑁) ∈ 𝑈) |
18 | eqid 2758 | . . . . . . 7 ⊢ (.r‘(𝑅 ↑s 𝐵)) = (.r‘(𝑅 ↑s 𝐵)) | |
19 | 14, 15, 18 | rhmmul 19564 | . . . . . 6 ⊢ ((𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑂‘(𝑀 ∙ 𝑁)) = ((𝑂‘𝑀)(.r‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
20 | 7, 11, 13, 19 | syl3anc 1368 | . . . . 5 ⊢ (𝜑 → (𝑂‘(𝑀 ∙ 𝑁)) = ((𝑂‘𝑀)(.r‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
21 | eqid 2758 | . . . . . 6 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
22 | 5 | fvexi 6677 | . . . . . . 7 ⊢ 𝐵 ∈ V |
23 | 22 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
24 | 14, 21 | rhmf 19563 | . . . . . . . 8 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
25 | 7, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
26 | 25, 11 | ffvelrnd 6849 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑀) ∈ (Base‘(𝑅 ↑s 𝐵))) |
27 | 25, 13 | ffvelrnd 6849 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑁) ∈ (Base‘(𝑅 ↑s 𝐵))) |
28 | evl1muld.s | . . . . . 6 ⊢ · = (.r‘𝑅) | |
29 | 4, 21, 1, 23, 26, 27, 28, 18 | pwsmulrval 16836 | . . . . 5 ⊢ (𝜑 → ((𝑂‘𝑀)(.r‘(𝑅 ↑s 𝐵))(𝑂‘𝑁)) = ((𝑂‘𝑀) ∘f · (𝑂‘𝑁))) |
30 | 20, 29 | eqtrd 2793 | . . . 4 ⊢ (𝜑 → (𝑂‘(𝑀 ∙ 𝑁)) = ((𝑂‘𝑀) ∘f · (𝑂‘𝑁))) |
31 | 30 | fveq1d 6665 | . . 3 ⊢ (𝜑 → ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (((𝑂‘𝑀) ∘f · (𝑂‘𝑁))‘𝑌)) |
32 | 4, 5, 21, 1, 23, 26 | pwselbas 16834 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑀):𝐵⟶𝐵) |
33 | 32 | ffnd 6504 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑀) Fn 𝐵) |
34 | 4, 5, 21, 1, 23, 27 | pwselbas 16834 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑁):𝐵⟶𝐵) |
35 | 34 | ffnd 6504 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑁) Fn 𝐵) |
36 | evl1addd.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
37 | fnfvof 7427 | . . . 4 ⊢ ((((𝑂‘𝑀) Fn 𝐵 ∧ (𝑂‘𝑁) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑌 ∈ 𝐵)) → (((𝑂‘𝑀) ∘f · (𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌) · ((𝑂‘𝑁)‘𝑌))) | |
38 | 33, 35, 23, 36, 37 | syl22anc 837 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀) ∘f · (𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌) · ((𝑂‘𝑁)‘𝑌))) |
39 | 10 | simprd 499 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑌) = 𝑉) |
40 | 12 | simprd 499 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑁)‘𝑌) = 𝑊) |
41 | 39, 40 | oveq12d 7174 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀)‘𝑌) · ((𝑂‘𝑁)‘𝑌)) = (𝑉 · 𝑊)) |
42 | 31, 38, 41 | 3eqtrd 2797 | . 2 ⊢ (𝜑 → ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊)) |
43 | 17, 42 | jca 515 | 1 ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 Fn wfn 6335 ⟶wf 6336 ‘cfv 6340 (class class class)co 7156 ∘f cof 7409 Basecbs 16555 .rcmulr 16638 ↑s cpws 16792 Ringcrg 19379 CRingccrg 19380 RingHom crh 19549 Poly1cpl1 20915 eval1ce1 21047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-ofr 7412 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-pm 8425 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-sup 8952 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-fz 12953 df-fzo 13096 df-seq 13432 df-hash 13754 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-mulr 16651 df-sca 16653 df-vsca 16654 df-ip 16655 df-tset 16656 df-ple 16657 df-ds 16659 df-hom 16661 df-cco 16662 df-0g 16787 df-gsum 16788 df-prds 16793 df-pws 16795 df-mre 16929 df-mrc 16930 df-acs 16932 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-mhm 18036 df-submnd 18037 df-grp 18186 df-minusg 18187 df-sbg 18188 df-mulg 18306 df-subg 18357 df-ghm 18437 df-cntz 18528 df-cmn 18989 df-abl 18990 df-mgp 19322 df-ur 19334 df-srg 19338 df-ring 19381 df-cring 19382 df-rnghom 19552 df-subrg 19615 df-lmod 19718 df-lss 19786 df-lsp 19826 df-assa 20632 df-asp 20633 df-ascl 20634 df-psr 20685 df-mvr 20686 df-mpl 20687 df-opsr 20689 df-evls 20849 df-evl 20850 df-psr1 20918 df-ply1 20920 df-evl1 21049 |
This theorem is referenced by: evl1vsd 21077 |
Copyright terms: Public domain | W3C validator |