![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1muld | Structured version Visualization version GIF version |
Description: Polynomial evaluation builder for multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
evl1addd.q | ⊢ 𝑂 = (eval1‘𝑅) |
evl1addd.p | ⊢ 𝑃 = (Poly1‘𝑅) |
evl1addd.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1addd.u | ⊢ 𝑈 = (Base‘𝑃) |
evl1addd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1addd.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
evl1addd.3 | ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) |
evl1addd.4 | ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) |
evl1muld.t | ⊢ ∙ = (.r‘𝑃) |
evl1muld.s | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
evl1muld | ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1addd.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
2 | evl1addd.q | . . . . . 6 ⊢ 𝑂 = (eval1‘𝑅) | |
3 | evl1addd.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | eqid 2737 | . . . . . 6 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
5 | evl1addd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 2, 3, 4, 5 | evl1rhm 22361 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
8 | rhmrcl1 20502 | . . . 4 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑃 ∈ Ring) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Ring) |
10 | evl1addd.3 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) | |
11 | 10 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑈) |
12 | evl1addd.4 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) | |
13 | 12 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑈) |
14 | evl1addd.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
15 | evl1muld.t | . . . 4 ⊢ ∙ = (.r‘𝑃) | |
16 | 14, 15 | ringcl 20277 | . . 3 ⊢ ((𝑃 ∈ Ring ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑀 ∙ 𝑁) ∈ 𝑈) |
17 | 9, 11, 13, 16 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝑀 ∙ 𝑁) ∈ 𝑈) |
18 | eqid 2737 | . . . . . . 7 ⊢ (.r‘(𝑅 ↑s 𝐵)) = (.r‘(𝑅 ↑s 𝐵)) | |
19 | 14, 15, 18 | rhmmul 20512 | . . . . . 6 ⊢ ((𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑂‘(𝑀 ∙ 𝑁)) = ((𝑂‘𝑀)(.r‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
20 | 7, 11, 13, 19 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → (𝑂‘(𝑀 ∙ 𝑁)) = ((𝑂‘𝑀)(.r‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
21 | eqid 2737 | . . . . . 6 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
22 | 5 | fvexi 6928 | . . . . . . 7 ⊢ 𝐵 ∈ V |
23 | 22 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
24 | 14, 21 | rhmf 20511 | . . . . . . . 8 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
25 | 7, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
26 | 25, 11 | ffvelcdmd 7112 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑀) ∈ (Base‘(𝑅 ↑s 𝐵))) |
27 | 25, 13 | ffvelcdmd 7112 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑁) ∈ (Base‘(𝑅 ↑s 𝐵))) |
28 | evl1muld.s | . . . . . 6 ⊢ · = (.r‘𝑅) | |
29 | 4, 21, 1, 23, 26, 27, 28, 18 | pwsmulrval 17547 | . . . . 5 ⊢ (𝜑 → ((𝑂‘𝑀)(.r‘(𝑅 ↑s 𝐵))(𝑂‘𝑁)) = ((𝑂‘𝑀) ∘f · (𝑂‘𝑁))) |
30 | 20, 29 | eqtrd 2777 | . . . 4 ⊢ (𝜑 → (𝑂‘(𝑀 ∙ 𝑁)) = ((𝑂‘𝑀) ∘f · (𝑂‘𝑁))) |
31 | 30 | fveq1d 6916 | . . 3 ⊢ (𝜑 → ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (((𝑂‘𝑀) ∘f · (𝑂‘𝑁))‘𝑌)) |
32 | 4, 5, 21, 1, 23, 26 | pwselbas 17545 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑀):𝐵⟶𝐵) |
33 | 32 | ffnd 6745 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑀) Fn 𝐵) |
34 | 4, 5, 21, 1, 23, 27 | pwselbas 17545 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑁):𝐵⟶𝐵) |
35 | 34 | ffnd 6745 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑁) Fn 𝐵) |
36 | evl1addd.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
37 | fnfvof 7721 | . . . 4 ⊢ ((((𝑂‘𝑀) Fn 𝐵 ∧ (𝑂‘𝑁) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑌 ∈ 𝐵)) → (((𝑂‘𝑀) ∘f · (𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌) · ((𝑂‘𝑁)‘𝑌))) | |
38 | 33, 35, 23, 36, 37 | syl22anc 839 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀) ∘f · (𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌) · ((𝑂‘𝑁)‘𝑌))) |
39 | 10 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑌) = 𝑉) |
40 | 12 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑁)‘𝑌) = 𝑊) |
41 | 39, 40 | oveq12d 7456 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀)‘𝑌) · ((𝑂‘𝑁)‘𝑌)) = (𝑉 · 𝑊)) |
42 | 31, 38, 41 | 3eqtrd 2781 | . 2 ⊢ (𝜑 → ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊)) |
43 | 17, 42 | jca 511 | 1 ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3481 Fn wfn 6564 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 ∘f cof 7702 Basecbs 17254 .rcmulr 17308 ↑s cpws 17502 Ringcrg 20260 CRingccrg 20261 RingHom crh 20495 Poly1cpl1 22203 eval1ce1 22343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-ofr 7705 df-om 7895 df-1st 8022 df-2nd 8023 df-supp 8194 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-er 8753 df-map 8876 df-pm 8877 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-fsupp 9409 df-sup 9489 df-oi 9557 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-fz 13554 df-fzo 13701 df-seq 14049 df-hash 14376 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-sca 17323 df-vsca 17324 df-ip 17325 df-tset 17326 df-ple 17327 df-ds 17329 df-hom 17331 df-cco 17332 df-0g 17497 df-gsum 17498 df-prds 17503 df-pws 17505 df-mre 17640 df-mrc 17641 df-acs 17643 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-srg 20214 df-ring 20262 df-cring 20263 df-rhm 20498 df-subrng 20572 df-subrg 20596 df-lmod 20886 df-lss 20957 df-lsp 20997 df-assa 21900 df-asp 21901 df-ascl 21902 df-psr 21956 df-mvr 21957 df-mpl 21958 df-opsr 21960 df-evls 22125 df-evl 22126 df-psr1 22206 df-ply1 22208 df-evl1 22345 |
This theorem is referenced by: evl1vsd 22373 evls1muld 22401 ply1mulrtss 33618 aks6d1c1p4 42107 evl1gprodd 42113 aks6d1c5lem2 42134 |
Copyright terms: Public domain | W3C validator |