MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1muld Structured version   Visualization version   GIF version

Theorem evl1muld 20500
Description: Polynomial evaluation builder for multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
evl1addd.q 𝑂 = (eval1𝑅)
evl1addd.p 𝑃 = (Poly1𝑅)
evl1addd.b 𝐵 = (Base‘𝑅)
evl1addd.u 𝑈 = (Base‘𝑃)
evl1addd.1 (𝜑𝑅 ∈ CRing)
evl1addd.2 (𝜑𝑌𝐵)
evl1addd.3 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
evl1addd.4 (𝜑 → (𝑁𝑈 ∧ ((𝑂𝑁)‘𝑌) = 𝑊))
evl1muld.t = (.r𝑃)
evl1muld.s · = (.r𝑅)
Assertion
Ref Expression
evl1muld (𝜑 → ((𝑀 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉 · 𝑊)))

Proof of Theorem evl1muld
StepHypRef Expression
1 evl1addd.1 . . . . 5 (𝜑𝑅 ∈ CRing)
2 evl1addd.q . . . . . 6 𝑂 = (eval1𝑅)
3 evl1addd.p . . . . . 6 𝑃 = (Poly1𝑅)
4 eqid 2821 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
5 evl1addd.b . . . . . 6 𝐵 = (Base‘𝑅)
62, 3, 4, 5evl1rhm 20489 . . . . 5 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
71, 6syl 17 . . . 4 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
8 rhmrcl1 19465 . . . 4 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑃 ∈ Ring)
97, 8syl 17 . . 3 (𝜑𝑃 ∈ Ring)
10 evl1addd.3 . . . 4 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
1110simpld 497 . . 3 (𝜑𝑀𝑈)
12 evl1addd.4 . . . 4 (𝜑 → (𝑁𝑈 ∧ ((𝑂𝑁)‘𝑌) = 𝑊))
1312simpld 497 . . 3 (𝜑𝑁𝑈)
14 evl1addd.u . . . 4 𝑈 = (Base‘𝑃)
15 evl1muld.t . . . 4 = (.r𝑃)
1614, 15ringcl 19305 . . 3 ((𝑃 ∈ Ring ∧ 𝑀𝑈𝑁𝑈) → (𝑀 𝑁) ∈ 𝑈)
179, 11, 13, 16syl3anc 1367 . 2 (𝜑 → (𝑀 𝑁) ∈ 𝑈)
18 eqid 2821 . . . . . . 7 (.r‘(𝑅s 𝐵)) = (.r‘(𝑅s 𝐵))
1914, 15, 18rhmmul 19473 . . . . . 6 ((𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) ∧ 𝑀𝑈𝑁𝑈) → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀)(.r‘(𝑅s 𝐵))(𝑂𝑁)))
207, 11, 13, 19syl3anc 1367 . . . . 5 (𝜑 → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀)(.r‘(𝑅s 𝐵))(𝑂𝑁)))
21 eqid 2821 . . . . . 6 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
225fvexi 6679 . . . . . . 7 𝐵 ∈ V
2322a1i 11 . . . . . 6 (𝜑𝐵 ∈ V)
2414, 21rhmf 19472 . . . . . . . 8 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
257, 24syl 17 . . . . . . 7 (𝜑𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
2625, 11ffvelrnd 6847 . . . . . 6 (𝜑 → (𝑂𝑀) ∈ (Base‘(𝑅s 𝐵)))
2725, 13ffvelrnd 6847 . . . . . 6 (𝜑 → (𝑂𝑁) ∈ (Base‘(𝑅s 𝐵)))
28 evl1muld.s . . . . . 6 · = (.r𝑅)
294, 21, 1, 23, 26, 27, 28, 18pwsmulrval 16758 . . . . 5 (𝜑 → ((𝑂𝑀)(.r‘(𝑅s 𝐵))(𝑂𝑁)) = ((𝑂𝑀) ∘f · (𝑂𝑁)))
3020, 29eqtrd 2856 . . . 4 (𝜑 → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀) ∘f · (𝑂𝑁)))
3130fveq1d 6667 . . 3 (𝜑 → ((𝑂‘(𝑀 𝑁))‘𝑌) = (((𝑂𝑀) ∘f · (𝑂𝑁))‘𝑌))
324, 5, 21, 1, 23, 26pwselbas 16756 . . . . 5 (𝜑 → (𝑂𝑀):𝐵𝐵)
3332ffnd 6510 . . . 4 (𝜑 → (𝑂𝑀) Fn 𝐵)
344, 5, 21, 1, 23, 27pwselbas 16756 . . . . 5 (𝜑 → (𝑂𝑁):𝐵𝐵)
3534ffnd 6510 . . . 4 (𝜑 → (𝑂𝑁) Fn 𝐵)
36 evl1addd.2 . . . 4 (𝜑𝑌𝐵)
37 fnfvof 7417 . . . 4 ((((𝑂𝑀) Fn 𝐵 ∧ (𝑂𝑁) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑌𝐵)) → (((𝑂𝑀) ∘f · (𝑂𝑁))‘𝑌) = (((𝑂𝑀)‘𝑌) · ((𝑂𝑁)‘𝑌)))
3833, 35, 23, 36, 37syl22anc 836 . . 3 (𝜑 → (((𝑂𝑀) ∘f · (𝑂𝑁))‘𝑌) = (((𝑂𝑀)‘𝑌) · ((𝑂𝑁)‘𝑌)))
3910simprd 498 . . . 4 (𝜑 → ((𝑂𝑀)‘𝑌) = 𝑉)
4012simprd 498 . . . 4 (𝜑 → ((𝑂𝑁)‘𝑌) = 𝑊)
4139, 40oveq12d 7168 . . 3 (𝜑 → (((𝑂𝑀)‘𝑌) · ((𝑂𝑁)‘𝑌)) = (𝑉 · 𝑊))
4231, 38, 413eqtrd 2860 . 2 (𝜑 → ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉 · 𝑊))
4317, 42jca 514 1 (𝜑 → ((𝑀 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉 · 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3495   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  f cof 7401  Basecbs 16477  .rcmulr 16560  s cpws 16714  Ringcrg 19291  CRingccrg 19292   RingHom crh 19458  Poly1cpl1 20339  eval1ce1 20471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-0g 16709  df-gsum 16710  df-prds 16715  df-pws 16717  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-srg 19250  df-ring 19293  df-cring 19294  df-rnghom 19461  df-subrg 19527  df-lmod 19630  df-lss 19698  df-lsp 19738  df-assa 20079  df-asp 20080  df-ascl 20081  df-psr 20130  df-mvr 20131  df-mpl 20132  df-opsr 20134  df-evls 20280  df-evl 20281  df-psr1 20342  df-ply1 20344  df-evl1 20473
This theorem is referenced by:  evl1vsd  20501
  Copyright terms: Public domain W3C validator