Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evl1muld | Structured version Visualization version GIF version |
Description: Polynomial evaluation builder for multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
evl1addd.q | ⊢ 𝑂 = (eval1‘𝑅) |
evl1addd.p | ⊢ 𝑃 = (Poly1‘𝑅) |
evl1addd.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1addd.u | ⊢ 𝑈 = (Base‘𝑃) |
evl1addd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1addd.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
evl1addd.3 | ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) |
evl1addd.4 | ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) |
evl1muld.t | ⊢ ∙ = (.r‘𝑃) |
evl1muld.s | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
evl1muld | ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1addd.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
2 | evl1addd.q | . . . . . 6 ⊢ 𝑂 = (eval1‘𝑅) | |
3 | evl1addd.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | eqid 2738 | . . . . . 6 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
5 | evl1addd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 2, 3, 4, 5 | evl1rhm 21498 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
8 | rhmrcl1 19963 | . . . 4 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑃 ∈ Ring) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Ring) |
10 | evl1addd.3 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) | |
11 | 10 | simpld 495 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑈) |
12 | evl1addd.4 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) | |
13 | 12 | simpld 495 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑈) |
14 | evl1addd.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
15 | evl1muld.t | . . . 4 ⊢ ∙ = (.r‘𝑃) | |
16 | 14, 15 | ringcl 19800 | . . 3 ⊢ ((𝑃 ∈ Ring ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑀 ∙ 𝑁) ∈ 𝑈) |
17 | 9, 11, 13, 16 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑀 ∙ 𝑁) ∈ 𝑈) |
18 | eqid 2738 | . . . . . . 7 ⊢ (.r‘(𝑅 ↑s 𝐵)) = (.r‘(𝑅 ↑s 𝐵)) | |
19 | 14, 15, 18 | rhmmul 19971 | . . . . . 6 ⊢ ((𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑂‘(𝑀 ∙ 𝑁)) = ((𝑂‘𝑀)(.r‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
20 | 7, 11, 13, 19 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑂‘(𝑀 ∙ 𝑁)) = ((𝑂‘𝑀)(.r‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
21 | eqid 2738 | . . . . . 6 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
22 | 5 | fvexi 6788 | . . . . . . 7 ⊢ 𝐵 ∈ V |
23 | 22 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
24 | 14, 21 | rhmf 19970 | . . . . . . . 8 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
25 | 7, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
26 | 25, 11 | ffvelrnd 6962 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑀) ∈ (Base‘(𝑅 ↑s 𝐵))) |
27 | 25, 13 | ffvelrnd 6962 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑁) ∈ (Base‘(𝑅 ↑s 𝐵))) |
28 | evl1muld.s | . . . . . 6 ⊢ · = (.r‘𝑅) | |
29 | 4, 21, 1, 23, 26, 27, 28, 18 | pwsmulrval 17202 | . . . . 5 ⊢ (𝜑 → ((𝑂‘𝑀)(.r‘(𝑅 ↑s 𝐵))(𝑂‘𝑁)) = ((𝑂‘𝑀) ∘f · (𝑂‘𝑁))) |
30 | 20, 29 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → (𝑂‘(𝑀 ∙ 𝑁)) = ((𝑂‘𝑀) ∘f · (𝑂‘𝑁))) |
31 | 30 | fveq1d 6776 | . . 3 ⊢ (𝜑 → ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (((𝑂‘𝑀) ∘f · (𝑂‘𝑁))‘𝑌)) |
32 | 4, 5, 21, 1, 23, 26 | pwselbas 17200 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑀):𝐵⟶𝐵) |
33 | 32 | ffnd 6601 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑀) Fn 𝐵) |
34 | 4, 5, 21, 1, 23, 27 | pwselbas 17200 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑁):𝐵⟶𝐵) |
35 | 34 | ffnd 6601 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑁) Fn 𝐵) |
36 | evl1addd.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
37 | fnfvof 7550 | . . . 4 ⊢ ((((𝑂‘𝑀) Fn 𝐵 ∧ (𝑂‘𝑁) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑌 ∈ 𝐵)) → (((𝑂‘𝑀) ∘f · (𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌) · ((𝑂‘𝑁)‘𝑌))) | |
38 | 33, 35, 23, 36, 37 | syl22anc 836 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀) ∘f · (𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌) · ((𝑂‘𝑁)‘𝑌))) |
39 | 10 | simprd 496 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑌) = 𝑉) |
40 | 12 | simprd 496 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑁)‘𝑌) = 𝑊) |
41 | 39, 40 | oveq12d 7293 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀)‘𝑌) · ((𝑂‘𝑁)‘𝑌)) = (𝑉 · 𝑊)) |
42 | 31, 38, 41 | 3eqtrd 2782 | . 2 ⊢ (𝜑 → ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊)) |
43 | 17, 42 | jca 512 | 1 ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 Basecbs 16912 .rcmulr 16963 ↑s cpws 17157 Ringcrg 19783 CRingccrg 19784 RingHom crh 19956 Poly1cpl1 21348 eval1ce1 21480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-0g 17152 df-gsum 17153 df-prds 17158 df-pws 17160 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-srg 19742 df-ring 19785 df-cring 19786 df-rnghom 19959 df-subrg 20022 df-lmod 20125 df-lss 20194 df-lsp 20234 df-assa 21060 df-asp 21061 df-ascl 21062 df-psr 21112 df-mvr 21113 df-mpl 21114 df-opsr 21116 df-evls 21282 df-evl 21283 df-psr1 21351 df-ply1 21353 df-evl1 21482 |
This theorem is referenced by: evl1vsd 21510 |
Copyright terms: Public domain | W3C validator |