| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzonmapblen | Structured version Visualization version GIF version | ||
| Description: The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less than the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.) |
| Ref | Expression |
|---|---|
| fzonmapblen | ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0 13602 | . . . 4 ⊢ (𝐴 ∈ (0..^𝑁) ↔ (𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐴 < 𝑁)) | |
| 2 | nn0re 12397 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
| 3 | nnre 12139 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 4 | 2, 3 | anim12i 613 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
| 5 | 4 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐴 < 𝑁) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
| 6 | 1, 5 | sylbi 217 | . . 3 ⊢ (𝐴 ∈ (0..^𝑁) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
| 7 | elfzoelz 13561 | . . . 4 ⊢ (𝐵 ∈ (0..^𝑁) → 𝐵 ∈ ℤ) | |
| 8 | 7 | zred 12583 | . . 3 ⊢ (𝐵 ∈ (0..^𝑁) → 𝐵 ∈ ℝ) |
| 9 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
| 10 | simpll 766 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 11 | resubcl 11432 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑁 − 𝐴) ∈ ℝ) | |
| 12 | 11 | ancoms 458 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁 − 𝐴) ∈ ℝ) |
| 13 | 12 | adantr 480 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝑁 − 𝐴) ∈ ℝ) |
| 14 | 9, 10, 13 | ltadd1d 11717 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ (𝐵 + (𝑁 − 𝐴)) < (𝐴 + (𝑁 − 𝐴)))) |
| 15 | 14 | biimpa 476 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < (𝐴 + (𝑁 − 𝐴))) |
| 16 | recn 11103 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 17 | recn 11103 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
| 18 | 16, 17 | anim12i 613 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
| 19 | 18 | adantr 480 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
| 20 | 19 | adantr 480 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
| 21 | pncan3 11375 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 + (𝑁 − 𝐴)) = 𝑁) | |
| 22 | 20, 21 | syl 17 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴 + (𝑁 − 𝐴)) = 𝑁) |
| 23 | 15, 22 | breqtrd 5119 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) |
| 24 | 23 | ex 412 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 + (𝑁 − 𝐴)) < 𝑁)) |
| 25 | 6, 8, 24 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁)) → (𝐵 < 𝐴 → (𝐵 + (𝑁 − 𝐴)) < 𝑁)) |
| 26 | 25 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 (class class class)co 7352 ℂcc 11011 ℝcr 11012 0cc0 11013 + caddc 11016 < clt 11153 − cmin 11351 ℕcn 12132 ℕ0cn0 12388 ..^cfzo 13556 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 |
| This theorem is referenced by: cshwshashlem2 17010 |
| Copyright terms: Public domain | W3C validator |