Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzonmapblen | Structured version Visualization version GIF version |
Description: The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less than the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.) |
Ref | Expression |
---|---|
fzonmapblen | ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo0 13120 | . . . 4 ⊢ (𝐴 ∈ (0..^𝑁) ↔ (𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐴 < 𝑁)) | |
2 | nn0re 11936 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
3 | nnre 11674 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
4 | 2, 3 | anim12i 616 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
5 | 4 | 3adant3 1130 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐴 < 𝑁) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
6 | 1, 5 | sylbi 220 | . . 3 ⊢ (𝐴 ∈ (0..^𝑁) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
7 | elfzoelz 13080 | . . . 4 ⊢ (𝐵 ∈ (0..^𝑁) → 𝐵 ∈ ℤ) | |
8 | 7 | zred 12119 | . . 3 ⊢ (𝐵 ∈ (0..^𝑁) → 𝐵 ∈ ℝ) |
9 | simpr 489 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
10 | simpll 767 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
11 | resubcl 10981 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑁 − 𝐴) ∈ ℝ) | |
12 | 11 | ancoms 463 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁 − 𝐴) ∈ ℝ) |
13 | 12 | adantr 485 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝑁 − 𝐴) ∈ ℝ) |
14 | 9, 10, 13 | ltadd1d 11264 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ (𝐵 + (𝑁 − 𝐴)) < (𝐴 + (𝑁 − 𝐴)))) |
15 | 14 | biimpa 481 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < (𝐴 + (𝑁 − 𝐴))) |
16 | recn 10658 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
17 | recn 10658 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
18 | 16, 17 | anim12i 616 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
19 | 18 | adantr 485 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
20 | 19 | adantr 485 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
21 | pncan3 10925 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 + (𝑁 − 𝐴)) = 𝑁) | |
22 | 20, 21 | syl 17 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴 + (𝑁 − 𝐴)) = 𝑁) |
23 | 15, 22 | breqtrd 5059 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) |
24 | 23 | ex 417 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 + (𝑁 − 𝐴)) < 𝑁)) |
25 | 6, 8, 24 | syl2an 599 | . 2 ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁)) → (𝐵 < 𝐴 → (𝐵 + (𝑁 − 𝐴)) < 𝑁)) |
26 | 25 | 3impia 1115 | 1 ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 class class class wbr 5033 (class class class)co 7151 ℂcc 10566 ℝcr 10567 0cc0 10568 + caddc 10571 < clt 10706 − cmin 10901 ℕcn 11667 ℕ0cn0 11927 ..^cfzo 13075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-n0 11928 df-z 12014 df-uz 12276 df-fz 12933 df-fzo 13076 |
This theorem is referenced by: cshwshashlem2 16481 |
Copyright terms: Public domain | W3C validator |