![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzonmapblen | Structured version Visualization version GIF version |
Description: The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less than the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.) |
Ref | Expression |
---|---|
fzonmapblen | ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo0 12761 | . . . 4 ⊢ (𝐴 ∈ (0..^𝑁) ↔ (𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐴 < 𝑁)) | |
2 | nn0re 11587 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
3 | nnre 11319 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
4 | 2, 3 | anim12i 607 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
5 | 4 | 3adant3 1163 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐴 < 𝑁) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
6 | 1, 5 | sylbi 209 | . . 3 ⊢ (𝐴 ∈ (0..^𝑁) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
7 | elfzoelz 12722 | . . . 4 ⊢ (𝐵 ∈ (0..^𝑁) → 𝐵 ∈ ℤ) | |
8 | 7 | zred 11769 | . . 3 ⊢ (𝐵 ∈ (0..^𝑁) → 𝐵 ∈ ℝ) |
9 | simpr 478 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
10 | simpll 784 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
11 | resubcl 10636 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑁 − 𝐴) ∈ ℝ) | |
12 | 11 | ancoms 451 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁 − 𝐴) ∈ ℝ) |
13 | 12 | adantr 473 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝑁 − 𝐴) ∈ ℝ) |
14 | 9, 10, 13 | ltadd1d 10911 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ (𝐵 + (𝑁 − 𝐴)) < (𝐴 + (𝑁 − 𝐴)))) |
15 | 14 | biimpa 469 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < (𝐴 + (𝑁 − 𝐴))) |
16 | recn 10313 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
17 | recn 10313 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
18 | 16, 17 | anim12i 607 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
19 | 18 | adantr 473 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
20 | 19 | adantr 473 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
21 | pncan3 10579 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 + (𝑁 − 𝐴)) = 𝑁) | |
22 | 20, 21 | syl 17 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴 + (𝑁 − 𝐴)) = 𝑁) |
23 | 15, 22 | breqtrd 4868 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) |
24 | 23 | ex 402 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 + (𝑁 − 𝐴)) < 𝑁)) |
25 | 6, 8, 24 | syl2an 590 | . 2 ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁)) → (𝐵 < 𝐴 → (𝐵 + (𝑁 − 𝐴)) < 𝑁)) |
26 | 25 | 3impia 1146 | 1 ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 class class class wbr 4842 (class class class)co 6877 ℂcc 10221 ℝcr 10222 0cc0 10223 + caddc 10226 < clt 10362 − cmin 10555 ℕcn 11311 ℕ0cn0 11577 ..^cfzo 12717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 ax-cnex 10279 ax-resscn 10280 ax-1cn 10281 ax-icn 10282 ax-addcl 10283 ax-addrcl 10284 ax-mulcl 10285 ax-mulrcl 10286 ax-mulcom 10287 ax-addass 10288 ax-mulass 10289 ax-distr 10290 ax-i2m1 10291 ax-1ne0 10292 ax-1rid 10293 ax-rnegex 10294 ax-rrecex 10295 ax-cnre 10296 ax-pre-lttri 10297 ax-pre-lttrn 10298 ax-pre-ltadd 10299 ax-pre-mulgt0 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-uni 4628 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-pred 5897 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-riota 6838 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-om 7299 df-1st 7400 df-2nd 7401 df-wrecs 7644 df-recs 7706 df-rdg 7744 df-er 7981 df-en 8195 df-dom 8196 df-sdom 8197 df-pnf 10364 df-mnf 10365 df-xr 10366 df-ltxr 10367 df-le 10368 df-sub 10557 df-neg 10558 df-nn 11312 df-n0 11578 df-z 11664 df-uz 11928 df-fz 12578 df-fzo 12718 |
This theorem is referenced by: cshwshashlem2 16128 |
Copyright terms: Public domain | W3C validator |