Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfzo0 | Structured version Visualization version GIF version |
Description: Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
elfzo0 | ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzouz 13400 | . . . 4 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ (ℤ≥‘0)) | |
2 | elnn0uz 12632 | . . . 4 ⊢ (𝐴 ∈ ℕ0 ↔ 𝐴 ∈ (ℤ≥‘0)) | |
3 | 1, 2 | sylibr 233 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ ℕ0) |
4 | elfzolt3b 13408 | . . . 4 ⊢ (𝐴 ∈ (0..^𝐵) → 0 ∈ (0..^𝐵)) | |
5 | lbfzo0 13436 | . . . 4 ⊢ (0 ∈ (0..^𝐵) ↔ 𝐵 ∈ ℕ) | |
6 | 4, 5 | sylib 217 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ ℕ) |
7 | elfzolt2 13405 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 < 𝐵) | |
8 | 3, 6, 7 | 3jca 1127 | . 2 ⊢ (𝐴 ∈ (0..^𝐵) → (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
9 | simp1 1135 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ0) | |
10 | 9, 2 | sylib 217 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ (ℤ≥‘0)) |
11 | nnz 12351 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
12 | 11 | 3ad2ant2 1133 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ) |
13 | simp3 1137 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
14 | elfzo2 13399 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ (ℤ≥‘0) ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) | |
15 | 10, 12, 13, 14 | syl3anbrc 1342 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ (0..^𝐵)) |
16 | 8, 15 | impbii 208 | 1 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1086 ∈ wcel 2107 class class class wbr 5075 ‘cfv 6437 (class class class)co 7284 0cc0 10880 < clt 11018 ℕcn 11982 ℕ0cn0 12242 ℤcz 12328 ℤ≥cuz 12591 ..^cfzo 13391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-n0 12243 df-z 12329 df-uz 12592 df-fz 13249 df-fzo 13392 |
This theorem is referenced by: elfzo0z 13438 nn0p1elfzo 13439 elfzo0le 13440 fzonmapblen 13442 fzofzim 13443 fzo1fzo0n0 13447 ubmelfzo 13461 elfzodifsumelfzo 13462 elfzonlteqm1 13472 fzonn0p1 13473 fzonn0p1p1 13475 elfzo0l 13486 ubmelm1fzo 13492 elfznelfzo 13501 subfzo0 13518 zmodidfzoimp 13630 modfzo0difsn 13672 modsumfzodifsn 13673 addmodlteq 13675 ccatalpha 14307 ccat2s1fvw 14358 ccat2s1fvwOLD 14359 swrdswrd 14427 swrdccatin1 14447 pfxccatin12lem3 14454 repswswrd 14506 cshwidxmod 14525 cshwidxmodr 14526 cshwidx0 14528 cshwidxm1 14529 cshf1 14532 2cshw 14535 cshweqrep 14543 cshw1 14544 cshco 14558 swrds2 14662 pfx2 14669 2swrd2eqwrdeq 14675 wwlktovf 14680 addmodlteqALT 16043 smueqlem 16206 hashgcdlem 16498 prmgaplem3 16763 cshwshashlem2 16807 psgnunilem5 19111 psgnunilem2 19112 psgnunilem3 19113 psgnunilem4 19114 usgr2pthlem 28140 uspgrn2crct 28182 crctcshwlkn0lem4 28187 crctcshwlkn0lem5 28188 crctcshwlkn0 28195 wwlksnredwwlkn 28269 clwlkclwwlklem2fv2 28369 clwlkclwwlklem2a4 28370 clwlkclwwlklem2a 28371 clwwisshclwwslemlem 28386 clwwlkel 28419 wwlksext2clwwlk 28430 umgr2cwwkdifex 28438 clwwlknonex2lem2 28481 upgr3v3e3cycl 28553 upgr4cycl4dv4e 28558 eucrctshift 28616 eucrct2eupth 28618 cshwrnid 31242 fiblem 32374 fib1 32376 fibp1 32377 signstfveq0 32565 lpadleft 32672 poimirlem17 35803 poimirlem20 35806 subsubelfzo0 44829 iccpartigtl 44886 lswn0 44907 bgoldbtbndlem4 45271 |
Copyright terms: Public domain | W3C validator |