Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfzo0 | Structured version Visualization version GIF version |
Description: Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
elfzo0 | ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzouz 13091 | . . . 4 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ (ℤ≥‘0)) | |
2 | elnn0uz 12323 | . . . 4 ⊢ (𝐴 ∈ ℕ0 ↔ 𝐴 ∈ (ℤ≥‘0)) | |
3 | 1, 2 | sylibr 237 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ ℕ0) |
4 | elfzolt3b 13099 | . . . 4 ⊢ (𝐴 ∈ (0..^𝐵) → 0 ∈ (0..^𝐵)) | |
5 | lbfzo0 13126 | . . . 4 ⊢ (0 ∈ (0..^𝐵) ↔ 𝐵 ∈ ℕ) | |
6 | 4, 5 | sylib 221 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ ℕ) |
7 | elfzolt2 13096 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 < 𝐵) | |
8 | 3, 6, 7 | 3jca 1125 | . 2 ⊢ (𝐴 ∈ (0..^𝐵) → (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
9 | simp1 1133 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ0) | |
10 | 9, 2 | sylib 221 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ (ℤ≥‘0)) |
11 | nnz 12043 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
12 | 11 | 3ad2ant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ) |
13 | simp3 1135 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
14 | elfzo2 13090 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ (ℤ≥‘0) ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) | |
15 | 10, 12, 13, 14 | syl3anbrc 1340 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ (0..^𝐵)) |
16 | 8, 15 | impbii 212 | 1 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ w3a 1084 ∈ wcel 2111 class class class wbr 5032 ‘cfv 6335 (class class class)co 7150 0cc0 10575 < clt 10713 ℕcn 11674 ℕ0cn0 11934 ℤcz 12020 ℤ≥cuz 12282 ..^cfzo 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-fzo 13083 |
This theorem is referenced by: elfzo0z 13128 nn0p1elfzo 13129 elfzo0le 13130 fzonmapblen 13132 fzofzim 13133 fzo1fzo0n0 13137 ubmelfzo 13151 elfzodifsumelfzo 13152 elfzonlteqm1 13162 fzonn0p1 13163 fzonn0p1p1 13165 elfzo0l 13176 ubmelm1fzo 13182 elfznelfzo 13191 subfzo0 13208 zmodidfzoimp 13318 modfzo0difsn 13360 modsumfzodifsn 13361 addmodlteq 13363 ccatalpha 13994 ccat2s1fvw 14045 ccat2s1fvwOLD 14046 swrdswrd 14114 swrdccatin1 14134 pfxccatin12lem3 14141 repswswrd 14193 cshwidxmod 14212 cshwidxmodr 14213 cshwidx0 14215 cshwidxm1 14216 cshf1 14219 2cshw 14222 cshweqrep 14230 cshw1 14231 cshco 14245 swrds2 14349 pfx2 14356 2swrd2eqwrdeq 14362 wwlktovf 14367 addmodlteqALT 15726 smueqlem 15889 hashgcdlem 16180 prmgaplem3 16444 cshwshashlem2 16488 psgnunilem5 18689 psgnunilem2 18690 psgnunilem3 18691 psgnunilem4 18692 usgr2pthlem 27651 uspgrn2crct 27693 crctcshwlkn0lem4 27698 crctcshwlkn0lem5 27699 crctcshwlkn0 27706 wwlksnredwwlkn 27780 clwlkclwwlklem2fv2 27880 clwlkclwwlklem2a4 27881 clwlkclwwlklem2a 27882 clwwisshclwwslemlem 27897 clwwlkel 27930 wwlksext2clwwlk 27941 umgr2cwwkdifex 27949 clwwlknonex2lem2 27992 upgr3v3e3cycl 28064 upgr4cycl4dv4e 28069 eucrctshift 28127 eucrct2eupth 28129 cshwrnid 30757 fiblem 31884 fib1 31886 fibp1 31887 signstfveq0 32075 lpadleft 32182 poimirlem17 35354 poimirlem20 35357 subsubelfzo0 44251 iccpartigtl 44308 lswn0 44329 bgoldbtbndlem4 44693 |
Copyright terms: Public domain | W3C validator |