Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfzo0 | Structured version Visualization version GIF version |
Description: Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
elfzo0 | ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzouz 13320 | . . . 4 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ (ℤ≥‘0)) | |
2 | elnn0uz 12552 | . . . 4 ⊢ (𝐴 ∈ ℕ0 ↔ 𝐴 ∈ (ℤ≥‘0)) | |
3 | 1, 2 | sylibr 233 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ ℕ0) |
4 | elfzolt3b 13328 | . . . 4 ⊢ (𝐴 ∈ (0..^𝐵) → 0 ∈ (0..^𝐵)) | |
5 | lbfzo0 13355 | . . . 4 ⊢ (0 ∈ (0..^𝐵) ↔ 𝐵 ∈ ℕ) | |
6 | 4, 5 | sylib 217 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ ℕ) |
7 | elfzolt2 13325 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 < 𝐵) | |
8 | 3, 6, 7 | 3jca 1126 | . 2 ⊢ (𝐴 ∈ (0..^𝐵) → (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
9 | simp1 1134 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ0) | |
10 | 9, 2 | sylib 217 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ (ℤ≥‘0)) |
11 | nnz 12272 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
12 | 11 | 3ad2ant2 1132 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ) |
13 | simp3 1136 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
14 | elfzo2 13319 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ (ℤ≥‘0) ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) | |
15 | 10, 12, 13, 14 | syl3anbrc 1341 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ (0..^𝐵)) |
16 | 8, 15 | impbii 208 | 1 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1085 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 0cc0 10802 < clt 10940 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 ℤ≥cuz 12511 ..^cfzo 13311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 |
This theorem is referenced by: elfzo0z 13357 nn0p1elfzo 13358 elfzo0le 13359 fzonmapblen 13361 fzofzim 13362 fzo1fzo0n0 13366 ubmelfzo 13380 elfzodifsumelfzo 13381 elfzonlteqm1 13391 fzonn0p1 13392 fzonn0p1p1 13394 elfzo0l 13405 ubmelm1fzo 13411 elfznelfzo 13420 subfzo0 13437 zmodidfzoimp 13549 modfzo0difsn 13591 modsumfzodifsn 13592 addmodlteq 13594 ccatalpha 14226 ccat2s1fvw 14277 ccat2s1fvwOLD 14278 swrdswrd 14346 swrdccatin1 14366 pfxccatin12lem3 14373 repswswrd 14425 cshwidxmod 14444 cshwidxmodr 14445 cshwidx0 14447 cshwidxm1 14448 cshf1 14451 2cshw 14454 cshweqrep 14462 cshw1 14463 cshco 14477 swrds2 14581 pfx2 14588 2swrd2eqwrdeq 14594 wwlktovf 14599 addmodlteqALT 15962 smueqlem 16125 hashgcdlem 16417 prmgaplem3 16682 cshwshashlem2 16726 psgnunilem5 19017 psgnunilem2 19018 psgnunilem3 19019 psgnunilem4 19020 usgr2pthlem 28032 uspgrn2crct 28074 crctcshwlkn0lem4 28079 crctcshwlkn0lem5 28080 crctcshwlkn0 28087 wwlksnredwwlkn 28161 clwlkclwwlklem2fv2 28261 clwlkclwwlklem2a4 28262 clwlkclwwlklem2a 28263 clwwisshclwwslemlem 28278 clwwlkel 28311 wwlksext2clwwlk 28322 umgr2cwwkdifex 28330 clwwlknonex2lem2 28373 upgr3v3e3cycl 28445 upgr4cycl4dv4e 28450 eucrctshift 28508 eucrct2eupth 28510 cshwrnid 31135 fiblem 32265 fib1 32267 fibp1 32268 signstfveq0 32456 lpadleft 32563 poimirlem17 35721 poimirlem20 35724 subsubelfzo0 44706 iccpartigtl 44763 lswn0 44784 bgoldbtbndlem4 45148 |
Copyright terms: Public domain | W3C validator |