MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzo0 Structured version   Visualization version   GIF version

Theorem elfzo0 13757
Description: Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
elfzo0 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))

Proof of Theorem elfzo0
StepHypRef Expression
1 elfzouz 13720 . . . 4 (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ (ℤ‘0))
2 elnn0uz 12948 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ (ℤ‘0))
31, 2sylibr 234 . . 3 (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ ℕ0)
4 elfzolt3b 13728 . . . 4 (𝐴 ∈ (0..^𝐵) → 0 ∈ (0..^𝐵))
5 lbfzo0 13756 . . . 4 (0 ∈ (0..^𝐵) ↔ 𝐵 ∈ ℕ)
64, 5sylib 218 . . 3 (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ ℕ)
7 elfzolt2 13725 . . 3 (𝐴 ∈ (0..^𝐵) → 𝐴 < 𝐵)
83, 6, 73jca 1128 . 2 (𝐴 ∈ (0..^𝐵) → (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))
9 simp1 1136 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ0)
109, 2sylib 218 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ (ℤ‘0))
11 nnz 12660 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
12113ad2ant2 1134 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ)
13 simp3 1138 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
14 elfzo2 13719 . . 3 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ (ℤ‘0) ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵))
1510, 12, 13, 14syl3anbrc 1343 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ (0..^𝐵))
168, 15impbii 209 1 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1087  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cc0 11184   < clt 11324  cn 12293  0cn0 12553  cz 12639  cuz 12903  ..^cfzo 13711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712
This theorem is referenced by:  elfzo0z  13758  nn0p1elfzo  13759  elfzo0le  13760  fzonmapblen  13762  fzofzim  13763  fzo1fzo0n0  13767  ubmelfzo  13781  elfzodifsumelfzo  13782  elfzonlteqm1  13792  fzonn0p1  13793  fzonn0p1p1  13795  elfzo0l  13806  ubmelm1fzo  13813  elfznelfzo  13822  subfzo0  13839  fvf1tp  13840  zmodidfzoimp  13952  modfzo0difsn  13994  modsumfzodifsn  13995  addmodlteq  13997  tpf1ofv1  14546  tpf1ofv2  14547  tpfo  14549  ccatalpha  14641  ccat2s1fvw  14686  swrdswrd  14753  swrdccatin1  14773  pfxccatin12lem3  14780  repswswrd  14832  cshwidxmod  14851  cshwidxmodr  14852  cshwidx0  14854  cshwidxm1  14855  cshf1  14858  2cshw  14861  cshweqrep  14869  cshw1  14870  cshco  14885  swrds2  14989  pfx2  14996  2swrd2eqwrdeq  15002  wwlktovf  15005  addmodlteqALT  16373  smueqlem  16536  hashgcdlem  16835  prmgaplem3  17100  cshwshashlem2  17144  psgnunilem5  19536  psgnunilem2  19537  psgnunilem3  19538  psgnunilem4  19539  psdmul  22193  usgr2pthlem  29799  uspgrn2crct  29841  crctcshwlkn0lem4  29846  crctcshwlkn0lem5  29847  crctcshwlkn0  29854  wwlksnredwwlkn  29928  clwlkclwwlklem2fv2  30028  clwlkclwwlklem2a4  30029  clwlkclwwlklem2a  30030  clwwisshclwwslemlem  30045  clwwlkel  30078  wwlksext2clwwlk  30089  umgr2cwwkdifex  30097  clwwlknonex2lem2  30140  upgr3v3e3cycl  30212  upgr4cycl4dv4e  30217  eucrctshift  30275  eucrct2eupth  30277  cshwrnid  32928  fzo0pmtrlast  33085  wrdpmtrlast  33086  1arithidomlem1  33528  1arithidomlem2  33529  1arithidom  33530  fiblem  34363  fib1  34365  fibp1  34366  signstfveq0  34554  lpadleft  34660  poimirlem17  37597  poimirlem20  37600  subsubelfzo0  47241  iccpartigtl  47297  lswn0  47318  bgoldbtbndlem4  47682
  Copyright terms: Public domain W3C validator