MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzo0 Structured version   Visualization version   GIF version

Theorem elfzo0 13740
Description: Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
elfzo0 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))

Proof of Theorem elfzo0
StepHypRef Expression
1 elfzouz 13703 . . . 4 (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ (ℤ‘0))
2 elnn0uz 12923 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ (ℤ‘0))
31, 2sylibr 234 . . 3 (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ ℕ0)
4 elfzolt3b 13711 . . . 4 (𝐴 ∈ (0..^𝐵) → 0 ∈ (0..^𝐵))
5 lbfzo0 13739 . . . 4 (0 ∈ (0..^𝐵) ↔ 𝐵 ∈ ℕ)
64, 5sylib 218 . . 3 (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ ℕ)
7 elfzolt2 13708 . . 3 (𝐴 ∈ (0..^𝐵) → 𝐴 < 𝐵)
83, 6, 73jca 1129 . 2 (𝐴 ∈ (0..^𝐵) → (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))
9 simp1 1137 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ0)
109, 2sylib 218 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ (ℤ‘0))
11 nnz 12634 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
12113ad2ant2 1135 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ)
13 simp3 1139 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
14 elfzo2 13702 . . 3 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ (ℤ‘0) ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵))
1510, 12, 13, 14syl3anbrc 1344 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ (0..^𝐵))
168, 15impbii 209 1 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1087  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  0cc0 11155   < clt 11295  cn 12266  0cn0 12526  cz 12613  cuz 12878  ..^cfzo 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695
This theorem is referenced by:  elfzo0z  13741  nn0p1elfzo  13742  elfzo0le  13743  fzonmapblen  13748  fzofzim  13749  fzo1fzo0n0  13754  ubmelfzo  13769  elfzodifsumelfzo  13770  elfzonlteqm1  13780  fzonn0p1  13781  fzonn0p1p1  13783  elfzo0l  13795  ubmelm1fzo  13802  elfznelfzo  13811  subfzo0  13828  fvf1tp  13829  zmodidfzoimp  13941  modfzo0difsn  13984  modsumfzodifsn  13985  addmodlteq  13987  tpf1ofv1  14536  tpf1ofv2  14537  tpfo  14539  ccatalpha  14631  ccat2s1fvw  14676  swrdswrd  14743  swrdccatin1  14763  pfxccatin12lem3  14770  repswswrd  14822  cshwidxmod  14841  cshwidxmodr  14842  cshwidx0  14844  cshwidxm1  14845  cshf1  14848  2cshw  14851  cshweqrep  14859  cshw1  14860  cshco  14875  swrds2  14979  pfx2  14986  2swrd2eqwrdeq  14992  wwlktovf  14995  addmodlteqALT  16362  smueqlem  16527  hashgcdlem  16825  prmgaplem3  17091  cshwshashlem2  17134  psgnunilem5  19512  psgnunilem2  19513  psgnunilem3  19514  psgnunilem4  19515  psdmul  22170  usgr2pthlem  29783  uspgrn2crct  29828  crctcshwlkn0lem4  29833  crctcshwlkn0lem5  29834  crctcshwlkn0  29841  wwlksnredwwlkn  29915  clwlkclwwlklem2fv2  30015  clwlkclwwlklem2a4  30016  clwlkclwwlklem2a  30017  clwwisshclwwslemlem  30032  clwwlkel  30065  wwlksext2clwwlk  30076  umgr2cwwkdifex  30084  clwwlknonex2lem2  30127  upgr3v3e3cycl  30199  upgr4cycl4dv4e  30204  eucrctshift  30262  eucrct2eupth  30264  cshwrnid  32946  fzo0pmtrlast  33112  wrdpmtrlast  33113  1arithidomlem1  33563  1arithidomlem2  33564  1arithidom  33565  fiblem  34400  fib1  34402  fibp1  34403  signstfveq0  34592  lpadleft  34698  poimirlem17  37644  poimirlem20  37647  subsubelfzo0  47338  plusmod5ne  47347  submodlt  47352  iccpartigtl  47410  lswn0  47431  bgoldbtbndlem4  47795  gpgusgralem  48011  gpgvtxedg0  48021  gpgvtxedg1  48022  gpg3nbgrvtx0  48032
  Copyright terms: Public domain W3C validator