| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummulc1 | Structured version Visualization version GIF version | ||
| Description: A finite ring sum multiplied by a constant. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) Remove unused hypothesis. (Revised by SN, 7-Mar-2025.) |
| Ref | Expression |
|---|---|
| gsummulc1.b | ⊢ 𝐵 = (Base‘𝑅) |
| gsummulc1.z | ⊢ 0 = (0g‘𝑅) |
| gsummulc1.t | ⊢ · = (.r‘𝑅) |
| gsummulc1.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| gsummulc1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsummulc1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| gsummulc1.x | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
| gsummulc1.n | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsummulc1 | ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummulc1.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | gsummulc1.z | . 2 ⊢ 0 = (0g‘𝑅) | |
| 3 | gsummulc1.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 4 | 3 | ringcmnd 20169 | . 2 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 5 | ringmnd 20128 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 7 | gsummulc1.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | gsummulc1.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | gsummulc1.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 10 | 1, 9 | ringrghm 20198 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 GrpHom 𝑅)) |
| 11 | 3, 8, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 GrpHom 𝑅)) |
| 12 | ghmmhm 19134 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 GrpHom 𝑅) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 MndHom 𝑅)) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 MndHom 𝑅)) |
| 14 | gsummulc1.x | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
| 15 | gsummulc1.n | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
| 16 | oveq1 7376 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑌) = (𝑋 · 𝑌)) | |
| 17 | oveq1 7376 | . 2 ⊢ (𝑥 = (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → (𝑥 · 𝑌) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) | |
| 18 | 1, 2, 4, 6, 7, 13, 14, 15, 16, 17 | gsummhm2 19845 | 1 ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 finSupp cfsupp 9288 Basecbs 17155 .rcmulr 17197 0gc0g 17378 Σg cgsu 17379 Mndcmnd 18637 MndHom cmhm 18684 GrpHom cghm 19120 Ringcrg 20118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-gsum 17381 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-grp 18844 df-minusg 18845 df-ghm 19121 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-ur 20067 df-ring 20120 |
| This theorem is referenced by: gsumdixp 20204 psrass1 21849 mamuass 22265 mavmulass 22412 elrgspnsubrunlem2 33172 fedgmullem1 33598 fedgmullem2 33599 fldextrspunlsplem 33641 evlselv 42548 |
| Copyright terms: Public domain | W3C validator |