Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsummulc1 | Structured version Visualization version GIF version |
Description: A finite ring sum multiplied by a constant. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) |
Ref | Expression |
---|---|
gsummulc1.b | ⊢ 𝐵 = (Base‘𝑅) |
gsummulc1.z | ⊢ 0 = (0g‘𝑅) |
gsummulc1.p | ⊢ + = (+g‘𝑅) |
gsummulc1.t | ⊢ · = (.r‘𝑅) |
gsummulc1.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
gsummulc1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsummulc1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
gsummulc1.x | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
gsummulc1.n | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
Ref | Expression |
---|---|
gsummulc1 | ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummulc1.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | gsummulc1.z | . 2 ⊢ 0 = (0g‘𝑅) | |
3 | gsummulc1.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
4 | ringcmn 19808 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
6 | ringmnd 19781 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | |
7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
8 | gsummulc1.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | gsummulc1.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | gsummulc1.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
11 | 1, 10 | ringrghm 19832 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 GrpHom 𝑅)) |
12 | 3, 9, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 GrpHom 𝑅)) |
13 | ghmmhm 18832 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 GrpHom 𝑅) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 MndHom 𝑅)) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 MndHom 𝑅)) |
15 | gsummulc1.x | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
16 | gsummulc1.n | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
17 | oveq1 7275 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑌) = (𝑋 · 𝑌)) | |
18 | oveq1 7275 | . 2 ⊢ (𝑥 = (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → (𝑥 · 𝑌) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) | |
19 | 1, 2, 5, 7, 8, 14, 15, 16, 17, 18 | gsummhm2 19528 | 1 ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6427 (class class class)co 7268 finSupp cfsupp 9116 Basecbs 16900 +gcplusg 16950 .rcmulr 16951 0gc0g 17138 Σg cgsu 17139 Mndcmnd 18373 MndHom cmhm 18416 GrpHom cghm 18819 CMndccmn 19374 Ringcrg 19771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-se 5541 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-isom 6436 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-supp 7966 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-1o 8285 df-er 8486 df-map 8605 df-en 8722 df-dom 8723 df-sdom 8724 df-fin 8725 df-fsupp 9117 df-oi 9257 df-card 9685 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-nn 11962 df-2 12024 df-n0 12222 df-z 12308 df-uz 12571 df-fz 13228 df-fzo 13371 df-seq 13710 df-hash 14033 df-sets 16853 df-slot 16871 df-ndx 16883 df-base 16901 df-plusg 16963 df-0g 17140 df-gsum 17141 df-mgm 18314 df-sgrp 18363 df-mnd 18374 df-mhm 18418 df-grp 18568 df-minusg 18569 df-ghm 18820 df-cntz 18911 df-cmn 19376 df-abl 19377 df-mgp 19709 df-ur 19726 df-ring 19773 |
This theorem is referenced by: gsumdixp 19836 psrass1 21162 mamuass 21537 mavmulass 21686 fedgmullem1 31696 fedgmullem2 31697 |
Copyright terms: Public domain | W3C validator |