MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummulc1 Structured version   Visualization version   GIF version

Theorem gsummulc1 18967
Description: A finite ring sum multiplied by a constant. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.)
Hypotheses
Ref Expression
gsummulc1.b 𝐵 = (Base‘𝑅)
gsummulc1.z 0 = (0g𝑅)
gsummulc1.p + = (+g𝑅)
gsummulc1.t · = (.r𝑅)
gsummulc1.r (𝜑𝑅 ∈ Ring)
gsummulc1.a (𝜑𝐴𝑉)
gsummulc1.y (𝜑𝑌𝐵)
gsummulc1.x ((𝜑𝑘𝐴) → 𝑋𝐵)
gsummulc1.n (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
Assertion
Ref Expression
gsummulc1 (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘𝐴𝑋)) · 𝑌))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   · ,𝑘   𝑘,𝑌
Allowed substitution hints:   + (𝑘)   𝑅(𝑘)   𝑉(𝑘)   𝑋(𝑘)   0 (𝑘)

Proof of Theorem gsummulc1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 gsummulc1.b . 2 𝐵 = (Base‘𝑅)
2 gsummulc1.z . 2 0 = (0g𝑅)
3 gsummulc1.r . . 3 (𝜑𝑅 ∈ Ring)
4 ringcmn 18942 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . 2 (𝜑𝑅 ∈ CMnd)
6 ringmnd 18917 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
73, 6syl 17 . 2 (𝜑𝑅 ∈ Mnd)
8 gsummulc1.a . 2 (𝜑𝐴𝑉)
9 gsummulc1.y . . . 4 (𝜑𝑌𝐵)
10 gsummulc1.t . . . . 5 · = (.r𝑅)
111, 10ringrghm 18966 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 GrpHom 𝑅))
123, 9, 11syl2anc 579 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 GrpHom 𝑅))
13 ghmmhm 18028 . . 3 ((𝑥𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 GrpHom 𝑅) → (𝑥𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 MndHom 𝑅))
1412, 13syl 17 . 2 (𝜑 → (𝑥𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 MndHom 𝑅))
15 gsummulc1.x . 2 ((𝜑𝑘𝐴) → 𝑋𝐵)
16 gsummulc1.n . 2 (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
17 oveq1 6917 . 2 (𝑥 = 𝑋 → (𝑥 · 𝑌) = (𝑋 · 𝑌))
18 oveq1 6917 . 2 (𝑥 = (𝑅 Σg (𝑘𝐴𝑋)) → (𝑥 · 𝑌) = ((𝑅 Σg (𝑘𝐴𝑋)) · 𝑌))
191, 2, 5, 7, 8, 14, 15, 16, 17, 18gsummhm2 18699 1 (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘𝐴𝑋)) · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164   class class class wbr 4875  cmpt 4954  cfv 6127  (class class class)co 6910   finSupp cfsupp 8550  Basecbs 16229  +gcplusg 16312  .rcmulr 16313  0gc0g 16460   Σg cgsu 16461  Mndcmnd 17654   MndHom cmhm 17693   GrpHom cghm 18015  CMndccmn 18553  Ringcrg 18908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-oi 8691  df-card 9085  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-n0 11626  df-z 11712  df-uz 11976  df-fz 12627  df-fzo 12768  df-seq 13103  df-hash 13418  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-plusg 16325  df-0g 16462  df-gsum 16463  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-mhm 17695  df-grp 17786  df-minusg 17787  df-ghm 18016  df-cntz 18107  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910
This theorem is referenced by:  gsumdixp  18970  psrass1  19773  mamuass  20582  mavmulass  20730
  Copyright terms: Public domain W3C validator