MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummulc2OLD Structured version   Visualization version   GIF version

Theorem gsummulc2OLD 20224
Description: Obsolete version of gsummulc2 20226 as of 7-Mar-2025. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
gsummulc1OLD.b 𝐵 = (Base‘𝑅)
gsummulc1OLD.z 0 = (0g𝑅)
gsummulc1OLD.p + = (+g𝑅)
gsummulc1OLD.t · = (.r𝑅)
gsummulc1OLD.r (𝜑𝑅 ∈ Ring)
gsummulc1OLD.a (𝜑𝐴𝑉)
gsummulc1OLD.y (𝜑𝑌𝐵)
gsummulc1OLD.x ((𝜑𝑘𝐴) → 𝑋𝐵)
gsummulc1OLD.n (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
Assertion
Ref Expression
gsummulc2OLD (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘𝐴𝑋))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   · ,𝑘   𝑘,𝑌
Allowed substitution hints:   + (𝑘)   𝑅(𝑘)   𝑉(𝑘)   𝑋(𝑘)   0 (𝑘)

Proof of Theorem gsummulc2OLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 gsummulc1OLD.b . 2 𝐵 = (Base‘𝑅)
2 gsummulc1OLD.z . 2 0 = (0g𝑅)
3 gsummulc1OLD.r . . 3 (𝜑𝑅 ∈ Ring)
4 ringcmn 20191 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . 2 (𝜑𝑅 ∈ CMnd)
6 ringmnd 20152 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
73, 6syl 17 . 2 (𝜑𝑅 ∈ Mnd)
8 gsummulc1OLD.a . 2 (𝜑𝐴𝑉)
9 gsummulc1OLD.y . . . 4 (𝜑𝑌𝐵)
10 gsummulc1OLD.t . . . . 5 · = (.r𝑅)
111, 10ringlghm 20221 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → (𝑥𝐵 ↦ (𝑌 · 𝑥)) ∈ (𝑅 GrpHom 𝑅))
123, 9, 11syl2anc 584 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝑌 · 𝑥)) ∈ (𝑅 GrpHom 𝑅))
13 ghmmhm 19158 . . 3 ((𝑥𝐵 ↦ (𝑌 · 𝑥)) ∈ (𝑅 GrpHom 𝑅) → (𝑥𝐵 ↦ (𝑌 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
1412, 13syl 17 . 2 (𝜑 → (𝑥𝐵 ↦ (𝑌 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
15 gsummulc1OLD.x . 2 ((𝜑𝑘𝐴) → 𝑋𝐵)
16 gsummulc1OLD.n . 2 (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
17 oveq2 7395 . 2 (𝑥 = 𝑋 → (𝑌 · 𝑥) = (𝑌 · 𝑋))
18 oveq2 7395 . 2 (𝑥 = (𝑅 Σg (𝑘𝐴𝑋)) → (𝑌 · 𝑥) = (𝑌 · (𝑅 Σg (𝑘𝐴𝑋))))
191, 2, 5, 7, 8, 14, 15, 16, 17, 18gsummhm2 19869 1 (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘𝐴𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387   finSupp cfsupp 9312  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661   MndHom cmhm 18708   GrpHom cghm 19144  CMndccmn 19710  Ringcrg 20142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-ur 20091  df-ring 20144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator