![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evlsgsumadd | Structured version Visualization version GIF version |
Description: Polynomial evaluation maps (additive) group sums to group sums. (Contributed by SN, 13-Feb-2024.) |
Ref | Expression |
---|---|
evlsgsumadd.q | β’ π = ((πΌ evalSub π)βπ ) |
evlsgsumadd.w | β’ π = (πΌ mPoly π) |
evlsgsumadd.0 | β’ 0 = (0gβπ) |
evlsgsumadd.u | β’ π = (π βΎs π ) |
evlsgsumadd.p | β’ π = (π βs (πΎ βm πΌ)) |
evlsgsumadd.k | β’ πΎ = (Baseβπ) |
evlsgsumadd.b | β’ π΅ = (Baseβπ) |
evlsgsumadd.i | β’ (π β πΌ β π) |
evlsgsumadd.s | β’ (π β π β CRing) |
evlsgsumadd.r | β’ (π β π β (SubRingβπ)) |
evlsgsumadd.y | β’ ((π β§ π₯ β π) β π β π΅) |
evlsgsumadd.n | β’ (π β π β β0) |
evlsgsumadd.f | β’ (π β (π₯ β π β¦ π) finSupp 0 ) |
Ref | Expression |
---|---|
evlsgsumadd | β’ (π β (πβ(π Ξ£g (π₯ β π β¦ π))) = (π Ξ£g (π₯ β π β¦ (πβπ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsgsumadd.b | . . 3 β’ π΅ = (Baseβπ) | |
2 | evlsgsumadd.0 | . . 3 β’ 0 = (0gβπ) | |
3 | evlsgsumadd.i | . . . . 5 β’ (π β πΌ β π) | |
4 | evlsgsumadd.r | . . . . . 6 β’ (π β π β (SubRingβπ)) | |
5 | evlsgsumadd.u | . . . . . . 7 β’ π = (π βΎs π ) | |
6 | 5 | subrgring 20515 | . . . . . 6 β’ (π β (SubRingβπ) β π β Ring) |
7 | 4, 6 | syl 17 | . . . . 5 β’ (π β π β Ring) |
8 | evlsgsumadd.w | . . . . . 6 β’ π = (πΌ mPoly π) | |
9 | 8 | mplring 21966 | . . . . 5 β’ ((πΌ β π β§ π β Ring) β π β Ring) |
10 | 3, 7, 9 | syl2anc 582 | . . . 4 β’ (π β π β Ring) |
11 | ringcmn 20220 | . . . 4 β’ (π β Ring β π β CMnd) | |
12 | 10, 11 | syl 17 | . . 3 β’ (π β π β CMnd) |
13 | evlsgsumadd.s | . . . . . 6 β’ (π β π β CRing) | |
14 | crngring 20187 | . . . . . 6 β’ (π β CRing β π β Ring) | |
15 | 13, 14 | syl 17 | . . . . 5 β’ (π β π β Ring) |
16 | ovex 7448 | . . . . 5 β’ (πΎ βm πΌ) β V | |
17 | 15, 16 | jctir 519 | . . . 4 β’ (π β (π β Ring β§ (πΎ βm πΌ) β V)) |
18 | evlsgsumadd.p | . . . . 5 β’ π = (π βs (πΎ βm πΌ)) | |
19 | 18 | pwsring 20262 | . . . 4 β’ ((π β Ring β§ (πΎ βm πΌ) β V) β π β Ring) |
20 | ringmnd 20185 | . . . 4 β’ (π β Ring β π β Mnd) | |
21 | 17, 19, 20 | 3syl 18 | . . 3 β’ (π β π β Mnd) |
22 | nn0ex 12506 | . . . . 5 β’ β0 β V | |
23 | 22 | a1i 11 | . . . 4 β’ (π β β0 β V) |
24 | evlsgsumadd.n | . . . 4 β’ (π β π β β0) | |
25 | 23, 24 | ssexd 5319 | . . 3 β’ (π β π β V) |
26 | evlsgsumadd.q | . . . . . 6 β’ π = ((πΌ evalSub π)βπ ) | |
27 | evlsgsumadd.k | . . . . . 6 β’ πΎ = (Baseβπ) | |
28 | 26, 8, 5, 18, 27 | evlsrhm 22039 | . . . . 5 β’ ((πΌ β π β§ π β CRing β§ π β (SubRingβπ)) β π β (π RingHom π)) |
29 | 3, 13, 4, 28 | syl3anc 1368 | . . . 4 β’ (π β π β (π RingHom π)) |
30 | rhmghm 20425 | . . . 4 β’ (π β (π RingHom π) β π β (π GrpHom π)) | |
31 | ghmmhm 19182 | . . . 4 β’ (π β (π GrpHom π) β π β (π MndHom π)) | |
32 | 29, 30, 31 | 3syl 18 | . . 3 β’ (π β π β (π MndHom π)) |
33 | evlsgsumadd.y | . . 3 β’ ((π β§ π₯ β π) β π β π΅) | |
34 | evlsgsumadd.f | . . 3 β’ (π β (π₯ β π β¦ π) finSupp 0 ) | |
35 | 1, 2, 12, 21, 25, 32, 33, 34 | gsummptmhm 19897 | . 2 β’ (π β (π Ξ£g (π₯ β π β¦ (πβπ))) = (πβ(π Ξ£g (π₯ β π β¦ π)))) |
36 | 35 | eqcomd 2731 | 1 β’ (π β (πβ(π Ξ£g (π₯ β π β¦ π))) = (π Ξ£g (π₯ β π β¦ (πβπ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 Vcvv 3463 β wss 3940 class class class wbr 5143 β¦ cmpt 5226 βcfv 6542 (class class class)co 7415 βm cmap 8841 finSupp cfsupp 9383 β0cn0 12500 Basecbs 17177 βΎs cress 17206 0gc0g 17418 Ξ£g cgsu 17419 βs cpws 17425 Mndcmnd 18691 MndHom cmhm 18735 GrpHom cghm 19169 CMndccmn 19737 Ringcrg 20175 CRingccrg 20176 RingHom crh 20410 SubRingcsubrg 20508 mPoly cmpl 21841 evalSub ces 22021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-ofr 7682 df-om 7868 df-1st 7989 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-pm 8844 df-ixp 8913 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fsupp 9384 df-sup 9463 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-fz 13515 df-fzo 13658 df-seq 13997 df-hash 14320 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-ip 17248 df-tset 17249 df-ple 17250 df-ds 17252 df-hom 17254 df-cco 17255 df-0g 17420 df-gsum 17421 df-prds 17426 df-pws 17428 df-mre 17563 df-mrc 17564 df-acs 17566 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-mhm 18737 df-submnd 18738 df-grp 18895 df-minusg 18896 df-sbg 18897 df-mulg 19026 df-subg 19080 df-ghm 19170 df-cntz 19270 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-srg 20129 df-ring 20177 df-cring 20178 df-rhm 20413 df-subrng 20485 df-subrg 20510 df-lmod 20747 df-lss 20818 df-lsp 20858 df-assa 21789 df-asp 21790 df-ascl 21791 df-psr 21844 df-mvr 21845 df-mpl 21846 df-evls 22023 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |