Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsummulc2 | Structured version Visualization version GIF version |
Description: A finite ring sum multiplied by a constant. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) |
Ref | Expression |
---|---|
gsummulc1.b | ⊢ 𝐵 = (Base‘𝑅) |
gsummulc1.z | ⊢ 0 = (0g‘𝑅) |
gsummulc1.p | ⊢ + = (+g‘𝑅) |
gsummulc1.t | ⊢ · = (.r‘𝑅) |
gsummulc1.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
gsummulc1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsummulc1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
gsummulc1.x | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
gsummulc1.n | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
Ref | Expression |
---|---|
gsummulc2 | ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummulc1.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | gsummulc1.z | . 2 ⊢ 0 = (0g‘𝑅) | |
3 | gsummulc1.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
4 | ringcmn 19446 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
6 | ringmnd 19419 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | |
7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
8 | gsummulc1.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | gsummulc1.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | gsummulc1.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
11 | 1, 10 | ringlghm 19469 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑌 · 𝑥)) ∈ (𝑅 GrpHom 𝑅)) |
12 | 3, 9, 11 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑌 · 𝑥)) ∈ (𝑅 GrpHom 𝑅)) |
13 | ghmmhm 18479 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↦ (𝑌 · 𝑥)) ∈ (𝑅 GrpHom 𝑅) → (𝑥 ∈ 𝐵 ↦ (𝑌 · 𝑥)) ∈ (𝑅 MndHom 𝑅)) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑌 · 𝑥)) ∈ (𝑅 MndHom 𝑅)) |
15 | gsummulc1.x | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
16 | gsummulc1.n | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
17 | oveq2 7172 | . 2 ⊢ (𝑥 = 𝑋 → (𝑌 · 𝑥) = (𝑌 · 𝑋)) | |
18 | oveq2 7172 | . 2 ⊢ (𝑥 = (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → (𝑌 · 𝑥) = (𝑌 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) | |
19 | 1, 2, 5, 7, 8, 14, 15, 16, 17, 18 | gsummhm2 19171 | 1 ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 class class class wbr 5027 ↦ cmpt 5107 ‘cfv 6333 (class class class)co 7164 finSupp cfsupp 8899 Basecbs 16579 +gcplusg 16661 .rcmulr 16662 0gc0g 16809 Σg cgsu 16810 Mndcmnd 18020 MndHom cmhm 18063 GrpHom cghm 18466 CMndccmn 19017 Ringcrg 19409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-se 5479 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-isom 6342 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-supp 7850 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-er 8313 df-map 8432 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-fsupp 8900 df-oi 9040 df-card 9434 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-2 11772 df-n0 11970 df-z 12056 df-uz 12318 df-fz 12975 df-fzo 13118 df-seq 13454 df-hash 13776 df-ndx 16582 df-slot 16583 df-base 16585 df-sets 16586 df-plusg 16674 df-0g 16811 df-gsum 16812 df-mgm 17961 df-sgrp 18010 df-mnd 18021 df-mhm 18065 df-grp 18215 df-minusg 18216 df-ghm 18467 df-cntz 18558 df-cmn 19019 df-abl 19020 df-mgp 19352 df-ur 19364 df-ring 19411 |
This theorem is referenced by: gsumdixp 19474 frlmphl 20590 psrass1 20777 psrass23l 20780 psrass23 20782 mamuass 21146 mamuvs1 21149 mamuvs2 21150 mavmulass 21293 mdetrsca 21347 cpmadugsumlemB 21618 cpmadugsumlemC 21619 amgmlem 25719 mdetpmtr1 31337 matunitlindflem1 35385 |
Copyright terms: Public domain | W3C validator |