| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummulc1OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of gsummulc1 20286 as of 7-Mar-2025. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| gsummulc1OLD.b | ⊢ 𝐵 = (Base‘𝑅) |
| gsummulc1OLD.z | ⊢ 0 = (0g‘𝑅) |
| gsummulc1OLD.p | ⊢ + = (+g‘𝑅) |
| gsummulc1OLD.t | ⊢ · = (.r‘𝑅) |
| gsummulc1OLD.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| gsummulc1OLD.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsummulc1OLD.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| gsummulc1OLD.x | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
| gsummulc1OLD.n | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsummulc1OLD | ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummulc1OLD.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | gsummulc1OLD.z | . 2 ⊢ 0 = (0g‘𝑅) | |
| 3 | gsummulc1OLD.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 4 | ringcmn 20252 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 6 | ringmnd 20213 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | |
| 7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 8 | gsummulc1OLD.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 9 | gsummulc1OLD.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | gsummulc1OLD.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 11 | 1, 10 | ringrghm 20283 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 GrpHom 𝑅)) |
| 12 | 3, 9, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 GrpHom 𝑅)) |
| 13 | ghmmhm 19218 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 GrpHom 𝑅) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 MndHom 𝑅)) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 MndHom 𝑅)) |
| 15 | gsummulc1OLD.x | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
| 16 | gsummulc1OLD.n | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
| 17 | oveq1 7421 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑌) = (𝑋 · 𝑌)) | |
| 18 | oveq1 7421 | . 2 ⊢ (𝑥 = (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → (𝑥 · 𝑌) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) | |
| 19 | 1, 2, 5, 7, 8, 14, 15, 16, 17, 18 | gsummhm2 19930 | 1 ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5125 ↦ cmpt 5207 ‘cfv 6542 (class class class)co 7414 finSupp cfsupp 9384 Basecbs 17230 +gcplusg 17277 .rcmulr 17278 0gc0g 17460 Σg cgsu 17461 Mndcmnd 18721 MndHom cmhm 18768 GrpHom cghm 19204 CMndccmn 19771 Ringcrg 20203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-fzo 13678 df-seq 14026 df-hash 14353 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17290 df-0g 17462 df-gsum 17463 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-mhm 18770 df-grp 18928 df-minusg 18929 df-ghm 19205 df-cntz 19309 df-cmn 19773 df-abl 19774 df-mgp 20111 df-ur 20152 df-ring 20205 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |