| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummulc1OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of gsummulc1 20231 as of 7-Mar-2025. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 10-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| gsummulc1OLD.b | ⊢ 𝐵 = (Base‘𝑅) |
| gsummulc1OLD.z | ⊢ 0 = (0g‘𝑅) |
| gsummulc1OLD.p | ⊢ + = (+g‘𝑅) |
| gsummulc1OLD.t | ⊢ · = (.r‘𝑅) |
| gsummulc1OLD.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| gsummulc1OLD.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsummulc1OLD.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| gsummulc1OLD.x | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
| gsummulc1OLD.n | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsummulc1OLD | ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummulc1OLD.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | gsummulc1OLD.z | . 2 ⊢ 0 = (0g‘𝑅) | |
| 3 | gsummulc1OLD.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 4 | ringcmn 20197 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 6 | ringmnd 20158 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | |
| 7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 8 | gsummulc1OLD.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 9 | gsummulc1OLD.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | gsummulc1OLD.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 11 | 1, 10 | ringrghm 20228 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 GrpHom 𝑅)) |
| 12 | 3, 9, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 GrpHom 𝑅)) |
| 13 | ghmmhm 19164 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 GrpHom 𝑅) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 MndHom 𝑅)) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 MndHom 𝑅)) |
| 15 | gsummulc1OLD.x | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
| 16 | gsummulc1OLD.n | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
| 17 | oveq1 7396 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑌) = (𝑋 · 𝑌)) | |
| 18 | oveq1 7396 | . 2 ⊢ (𝑥 = (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → (𝑥 · 𝑌) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) | |
| 19 | 1, 2, 5, 7, 8, 14, 15, 16, 17, 18 | gsummhm2 19875 | 1 ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5109 ↦ cmpt 5190 ‘cfv 6513 (class class class)co 7389 finSupp cfsupp 9318 Basecbs 17185 +gcplusg 17226 .rcmulr 17227 0gc0g 17408 Σg cgsu 17409 Mndcmnd 18667 MndHom cmhm 18714 GrpHom cghm 19150 CMndccmn 19716 Ringcrg 20148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-fzo 13622 df-seq 13973 df-hash 14302 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-0g 17410 df-gsum 17411 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-grp 18874 df-minusg 18875 df-ghm 19151 df-cntz 19255 df-cmn 19718 df-abl 19719 df-mgp 20056 df-ur 20097 df-ring 20150 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |