![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgedgvtx1lem | Structured version Visualization version GIF version |
Description: Lemma for gpgedgvtx1 47993. (Contributed by AV, 1-Sep-2025.) (Proof shortened by AV, 8-Sep-2025.) |
Ref | Expression |
---|---|
ceilhalfelfzo1.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
gpgedgvtx1lem.i | ⊢ 𝐼 = (0..^𝑁) |
Ref | Expression |
---|---|
gpgedgvtx1lem | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑋 ∈ 𝐽) → 𝑋 ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzo0ss1 13725 | . . . . 5 ⊢ (1..^𝑁) ⊆ (0..^𝑁) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → (1..^𝑁) ⊆ (0..^𝑁)) |
3 | gpgedgvtx1lem.i | . . . 4 ⊢ 𝐼 = (0..^𝑁) | |
4 | 2, 3 | sseqtrrdi 4024 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → (1..^𝑁) ⊆ 𝐼) |
5 | 4 | adantr 480 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑋 ∈ 𝐽) → (1..^𝑁) ⊆ 𝐼) |
6 | eluzge3nn 12928 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | |
7 | ceilhalfelfzo1.j | . . . . 5 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
8 | 7 | ceilhalfelfzo1 47989 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ 𝐽 → 𝑋 ∈ (1..^𝑁))) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑋 ∈ 𝐽 → 𝑋 ∈ (1..^𝑁))) |
10 | 9 | imp 406 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑋 ∈ 𝐽) → 𝑋 ∈ (1..^𝑁)) |
11 | 5, 10 | sseldd 3983 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑋 ∈ 𝐽) → 𝑋 ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3950 ‘cfv 6559 (class class class)co 7429 0cc0 11151 1c1 11152 / cdiv 11916 ℕcn 12262 2c2 12317 3c3 12318 ℤ≥cuz 12874 ..^cfzo 13690 ⌈cceil 13827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 ax-pre-sup 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-sup 9478 df-inf 9479 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-div 11917 df-nn 12263 df-2 12325 df-3 12326 df-n0 12523 df-z 12610 df-uz 12875 df-rp 13031 df-fz 13544 df-fzo 13691 df-fl 13828 df-ceil 13829 |
This theorem is referenced by: gpgedgvtx1 47993 |
Copyright terms: Public domain | W3C validator |