| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ceilhalfelfzo1 | Structured version Visualization version GIF version | ||
| Description: A positive integer less than (the ceiling of) half of another integer is in the half-open range of positive integers up to the other integer. (Contributed by AV, 7-Sep-2025.) |
| Ref | Expression |
|---|---|
| ceilhalfelfzo1.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| Ref | Expression |
|---|---|
| ceilhalfelfzo1 | ⊢ (𝑁 ∈ ℕ → (𝐾 ∈ 𝐽 → 𝐾 ∈ (1..^𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceilhalfelfzo1.j | . . 3 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (𝐾 ∈ 𝐽 ↔ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 3 | nnre 12194 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 4 | 3 | rehalfcld 12435 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℝ) |
| 5 | 4 | ceilcld 13811 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℤ) |
| 6 | nnz 12556 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 7 | nnnn0 12455 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 8 | 2nn 12260 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 9 | nn0ledivnn 13072 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℕ) → (𝑁 / 2) ≤ 𝑁) | |
| 10 | 7, 8, 9 | sylancl 586 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 / 2) ≤ 𝑁) |
| 11 | ceille 13818 | . . . . . 6 ⊢ (((𝑁 / 2) ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ (𝑁 / 2) ≤ 𝑁) → (⌈‘(𝑁 / 2)) ≤ 𝑁) | |
| 12 | 4, 6, 10, 11 | syl3anc 1373 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (⌈‘(𝑁 / 2)) ≤ 𝑁) |
| 13 | eluz2 12805 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘(⌈‘(𝑁 / 2))) ↔ ((⌈‘(𝑁 / 2)) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (⌈‘(𝑁 / 2)) ≤ 𝑁)) | |
| 14 | 5, 6, 12, 13 | syl3anbrc 1344 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘(⌈‘(𝑁 / 2)))) |
| 15 | fzoss2 13654 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘(⌈‘(𝑁 / 2))) → (1..^(⌈‘(𝑁 / 2))) ⊆ (1..^𝑁)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ → (1..^(⌈‘(𝑁 / 2))) ⊆ (1..^𝑁)) |
| 17 | 16 | sseld 3947 | . 2 ⊢ (𝑁 ∈ ℕ → (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ (1..^𝑁))) |
| 18 | 2, 17 | biimtrid 242 | 1 ⊢ (𝑁 ∈ ℕ → (𝐾 ∈ 𝐽 → 𝐾 ∈ (1..^𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 ℝcr 11073 1c1 11075 ≤ cle 11215 / cdiv 11841 ℕcn 12187 2c2 12242 ℕ0cn0 12448 ℤcz 12535 ℤ≥cuz 12799 ..^cfzo 13621 ⌈cceil 13759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-fz 13475 df-fzo 13622 df-fl 13760 df-ceil 13761 |
| This theorem is referenced by: gpgedgvtx1lem 47322 gpg5nbgrvtx13starlem1 48052 gpg5nbgrvtx13starlem2 48053 gpg5nbgrvtx13starlem3 48054 |
| Copyright terms: Public domain | W3C validator |