![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ceilhalfelfzo1 | Structured version Visualization version GIF version |
Description: A positive integer less than (the ceiling of) half of another integer is in the half-open range of positive integers up to the other integer. (Contributed by AV, 7-Sep-2025.) |
Ref | Expression |
---|---|
ceilhalfelfzo1.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
Ref | Expression |
---|---|
ceilhalfelfzo1 | ⊢ (𝑁 ∈ ℕ → (𝐾 ∈ 𝐽 → 𝐾 ∈ (1..^𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceilhalfelfzo1.j | . . 3 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
2 | 1 | eleq2i 2836 | . 2 ⊢ (𝐾 ∈ 𝐽 ↔ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
3 | nnre 12305 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
4 | 3 | rehalfcld 12545 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℝ) |
5 | 4 | ceilcld 13910 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℤ) |
6 | nnz 12666 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
7 | nnnn0 12565 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
8 | 2nn 12371 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
9 | nn0ledivnn 13180 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℕ) → (𝑁 / 2) ≤ 𝑁) | |
10 | 7, 8, 9 | sylancl 585 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 / 2) ≤ 𝑁) |
11 | ceille 13917 | . . . . . 6 ⊢ (((𝑁 / 2) ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ (𝑁 / 2) ≤ 𝑁) → (⌈‘(𝑁 / 2)) ≤ 𝑁) | |
12 | 4, 6, 10, 11 | syl3anc 1371 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (⌈‘(𝑁 / 2)) ≤ 𝑁) |
13 | eluz2 12916 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘(⌈‘(𝑁 / 2))) ↔ ((⌈‘(𝑁 / 2)) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (⌈‘(𝑁 / 2)) ≤ 𝑁)) | |
14 | 5, 6, 12, 13 | syl3anbrc 1343 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘(⌈‘(𝑁 / 2)))) |
15 | fzoss2 13755 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘(⌈‘(𝑁 / 2))) → (1..^(⌈‘(𝑁 / 2))) ⊆ (1..^𝑁)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ → (1..^(⌈‘(𝑁 / 2))) ⊆ (1..^𝑁)) |
17 | 16 | sseld 4007 | . 2 ⊢ (𝑁 ∈ ℕ → (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ (1..^𝑁))) |
18 | 2, 17 | biimtrid 242 | 1 ⊢ (𝑁 ∈ ℕ → (𝐾 ∈ 𝐽 → 𝐾 ∈ (1..^𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5167 ‘cfv 6576 (class class class)co 7451 ℝcr 11186 1c1 11188 ≤ cle 11328 / cdiv 11952 ℕcn 12298 2c2 12353 ℕ0cn0 12558 ℤcz 12645 ℤ≥cuz 12910 ..^cfzo 13722 ⌈cceil 13858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5318 ax-nul 5325 ax-pow 5384 ax-pr 5448 ax-un 7773 ax-cnex 11243 ax-resscn 11244 ax-1cn 11245 ax-icn 11246 ax-addcl 11247 ax-addrcl 11248 ax-mulcl 11249 ax-mulrcl 11250 ax-mulcom 11251 ax-addass 11252 ax-mulass 11253 ax-distr 11254 ax-i2m1 11255 ax-1ne0 11256 ax-1rid 11257 ax-rnegex 11258 ax-rrecex 11259 ax-cnre 11260 ax-pre-lttri 11261 ax-pre-lttrn 11262 ax-pre-ltadd 11263 ax-pre-mulgt0 11264 ax-pre-sup 11265 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4933 df-iun 5018 df-br 5168 df-opab 5230 df-mpt 5251 df-tr 5285 df-id 5594 df-eprel 5600 df-po 5608 df-so 5609 df-fr 5653 df-we 5655 df-xp 5707 df-rel 5708 df-cnv 5709 df-co 5710 df-dm 5711 df-rn 5712 df-res 5713 df-ima 5714 df-pred 6335 df-ord 6401 df-on 6402 df-lim 6403 df-suc 6404 df-iota 6528 df-fun 6578 df-fn 6579 df-f 6580 df-f1 6581 df-fo 6582 df-f1o 6583 df-fv 6584 df-riota 7407 df-ov 7454 df-oprab 7455 df-mpo 7456 df-om 7907 df-1st 8033 df-2nd 8034 df-frecs 8325 df-wrecs 8356 df-recs 8430 df-rdg 8469 df-er 8766 df-en 9007 df-dom 9008 df-sdom 9009 df-sup 9514 df-inf 9515 df-pnf 11329 df-mnf 11330 df-xr 11331 df-ltxr 11332 df-le 11333 df-sub 11526 df-neg 11527 df-div 11953 df-nn 12299 df-2 12361 df-n0 12559 df-z 12646 df-uz 12911 df-rp 13067 df-fz 13579 df-fzo 13723 df-fl 13859 df-ceil 13860 |
This theorem is referenced by: gpgedgvtx1lem 47904 gpg5nbgrvtx13starlem1 47914 gpg5nbgrvtx13starlem2 47915 gpg5nbgrvtx13starlem3 47916 |
Copyright terms: Public domain | W3C validator |