| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluz3nn | Structured version Visualization version GIF version | ||
| Description: An integer greater than or equal to 3 is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.) (Proof shortened by AV, 30-Nov-2025.) |
| Ref | Expression |
|---|---|
| eluz3nn | ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzuzle23 12849 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ (ℤ≥‘2)) | |
| 2 | eluz2nn 12853 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6513 ℕcn 12187 2c2 12242 3c3 12243 ℤ≥cuz 12799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-z 12536 df-uz 12800 |
| This theorem is referenced by: eluz5nn 12856 uz3m2nn 12859 modaddid 13878 m1modge3gt1 13889 prmgaplem3 17030 axlowdimlem7 28881 axlowdimlem15 28889 axlowdimlem16 28890 axlowdimlem17 28891 clwwlknonex2 30044 2clwwlk2clwwlklem 30281 numclwlk1lem2 30305 nrt2irr 30408 dffltz 42615 fltltc 42642 fltnltalem 42643 fltnlta 42644 gpgedgvtx1lem 47322 1elfzo1ceilhalf1 47328 modmknepk 47353 modm1p1ne 47361 lighneallem4a 47599 bgoldbtbndlem2 47797 bgoldbtbndlem3 47798 bgoldbtbndlem4 47799 bgoldbtbnd 47800 gpgvtxel 48028 gpgedgel 48031 gpgprismgriedgdmel 48032 gpgprismgriedgdmss 48033 gpgvtx0 48034 gpgvtx1 48035 opgpgvtx 48036 gpgusgralem 48037 gpgusgra 48038 gpgedgvtx0 48042 gpgedgvtx1 48043 gpgedg2iv 48048 gpg3nbgrvtx0 48057 gpgprismgr4cycllem3 48077 gpgprismgr4cycllem9 48083 gpgprismgr4cycllem10 48084 |
| Copyright terms: Public domain | W3C validator |