| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluz3nn | Structured version Visualization version GIF version | ||
| Description: An integer greater than or equal to 3 is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.) (Proof shortened by AV, 30-Nov-2025.) |
| Ref | Expression |
|---|---|
| eluz3nn | ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzuzle23 12804 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ (ℤ≥‘2)) | |
| 2 | eluz2nn 12808 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6486 ℕcn 12147 2c2 12202 3c3 12203 ℤ≥cuz 12754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-z 12491 df-uz 12755 |
| This theorem is referenced by: eluz5nn 12811 uz3m2nn 12814 modaddid 13833 m1modge3gt1 13844 prmgaplem3 16984 axlowdimlem7 28912 axlowdimlem15 28920 axlowdimlem16 28921 axlowdimlem17 28922 clwwlknonex2 30072 2clwwlk2clwwlklem 30309 numclwlk1lem2 30333 nrt2irr 30436 dffltz 42627 fltltc 42654 fltnltalem 42655 fltnlta 42656 gpgedgvtx1lem 47335 1elfzo1ceilhalf1 47341 modmknepk 47366 modm1p1ne 47374 lighneallem4a 47612 bgoldbtbndlem2 47810 bgoldbtbndlem3 47811 bgoldbtbndlem4 47812 bgoldbtbnd 47813 gpgvtxel 48051 gpgedgel 48054 gpgprismgriedgdmel 48055 gpgprismgriedgdmss 48056 gpgvtx0 48057 gpgvtx1 48058 opgpgvtx 48059 gpgusgralem 48060 gpgusgra 48061 gpgedgvtx0 48065 gpgedgvtx1 48066 gpgedg2iv 48071 gpg3nbgrvtx0 48080 gpgprismgr4cycllem3 48101 gpgprismgr4cycllem9 48107 gpgprismgr4cycllem10 48108 |
| Copyright terms: Public domain | W3C validator |