MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashunx Structured version   Visualization version   GIF version

Theorem hashunx 14293
Description: The size of the union of disjoint sets is the result of the extended real addition of their sizes, analogous to hashun 14289. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
Assertion
Ref Expression
hashunx ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))

Proof of Theorem hashunx
StepHypRef Expression
1 hashun 14289 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
213expa 1118 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
3 hashcl 14263 . . . . . . . . . 10 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
43nn0red 12443 . . . . . . . . 9 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ)
5 hashcl 14263 . . . . . . . . . 10 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
65nn0red 12443 . . . . . . . . 9 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℝ)
74, 6anim12i 613 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
87adantr 480 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → ((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
9 rexadd 13131 . . . . . . 7 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
108, 9syl 17 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
1110eqcomd 2737 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
122, 11eqtrd 2766 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
1312expcom 413 . . 3 ((𝐴𝐵) = ∅ → ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
14133ad2ant3 1135 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
15 unexg 7676 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
16 unfir 9192 . . . . . . 7 ((𝐴𝐵) ∈ Fin → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
1716con3i 154 . . . . . 6 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴𝐵) ∈ Fin)
18 hashinf 14242 . . . . . 6 (((𝐴𝐵) ∈ V ∧ ¬ (𝐴𝐵) ∈ Fin) → (♯‘(𝐴𝐵)) = +∞)
1915, 17, 18syl2anr 597 . . . . 5 ((¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝑉𝐵𝑊)) → (♯‘(𝐴𝐵)) = +∞)
20 ianor 983 . . . . . . 7 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ↔ (¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin))
21 simprl 770 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐴𝑉)
22 simprr 772 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐵𝑊)
23 hashnfinnn0 14268 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) ∉ ℕ0)
2423ex 412 . . . . . . . . . . . . 13 (𝐴𝑉 → (¬ 𝐴 ∈ Fin → (♯‘𝐴) ∉ ℕ0))
2524adantr 480 . . . . . . . . . . . 12 ((𝐴𝑉𝐵𝑊) → (¬ 𝐴 ∈ Fin → (♯‘𝐴) ∉ ℕ0))
2625impcom 407 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → (♯‘𝐴) ∉ ℕ0)
27 hashinfxadd 14292 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
2821, 22, 26, 27syl3anc 1373 . . . . . . . . . 10 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
2928eqcomd 2737 . . . . . . . . 9 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
3029ex 412 . . . . . . . 8 𝐴 ∈ Fin → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
31 hashxrcl 14264 . . . . . . . . . . . . . 14 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
32 hashxrcl 14264 . . . . . . . . . . . . . 14 (𝐵𝑊 → (♯‘𝐵) ∈ ℝ*)
3331, 32anim12i 613 . . . . . . . . . . . . 13 ((𝐴𝑉𝐵𝑊) → ((♯‘𝐴) ∈ ℝ* ∧ (♯‘𝐵) ∈ ℝ*))
3433adantl 481 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) ∈ ℝ* ∧ (♯‘𝐵) ∈ ℝ*))
35 xaddcom 13139 . . . . . . . . . . . 12 (((♯‘𝐴) ∈ ℝ* ∧ (♯‘𝐵) ∈ ℝ*) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐵) +𝑒 (♯‘𝐴)))
3634, 35syl 17 . . . . . . . . . . 11 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐵) +𝑒 (♯‘𝐴)))
37 simprr 772 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐵𝑊)
38 simprl 770 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐴𝑉)
39 hashnfinnn0 14268 . . . . . . . . . . . . . . 15 ((𝐵𝑊 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) ∉ ℕ0)
4039ex 412 . . . . . . . . . . . . . 14 (𝐵𝑊 → (¬ 𝐵 ∈ Fin → (♯‘𝐵) ∉ ℕ0))
4140adantl 481 . . . . . . . . . . . . 13 ((𝐴𝑉𝐵𝑊) → (¬ 𝐵 ∈ Fin → (♯‘𝐵) ∉ ℕ0))
4241impcom 407 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → (♯‘𝐵) ∉ ℕ0)
43 hashinfxadd 14292 . . . . . . . . . . . 12 ((𝐵𝑊𝐴𝑉 ∧ (♯‘𝐵) ∉ ℕ0) → ((♯‘𝐵) +𝑒 (♯‘𝐴)) = +∞)
4437, 38, 42, 43syl3anc 1373 . . . . . . . . . . 11 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐵) +𝑒 (♯‘𝐴)) = +∞)
4536, 44eqtrd 2766 . . . . . . . . . 10 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
4645eqcomd 2737 . . . . . . . . 9 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
4746ex 412 . . . . . . . 8 𝐵 ∈ Fin → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
4830, 47jaoi 857 . . . . . . 7 ((¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin) → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
4920, 48sylbi 217 . . . . . 6 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
5049imp 406 . . . . 5 ((¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝑉𝐵𝑊)) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
5119, 50eqtrd 2766 . . . 4 ((¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝑉𝐵𝑊)) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
5251expcom 413 . . 3 ((𝐴𝑉𝐵𝑊) → (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
53523adant3 1132 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
5414, 53pm2.61d 179 1 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wnel 3032  Vcvv 3436  cun 3895  cin 3896  c0 4280  cfv 6481  (class class class)co 7346  Fincfn 8869  cr 11005   + caddc 11009  +∞cpnf 11143  *cxr 11145  0cn0 12381   +𝑒 cxad 13009  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-xadd 13012  df-hash 14238
This theorem is referenced by:  hashunsngx  14300  vtxdun  29460  vtxdginducedm1  29522  dimkerim  33640
  Copyright terms: Public domain W3C validator