MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashunx Structured version   Visualization version   GIF version

Theorem hashunx 14435
Description: The size of the union of disjoint sets is the result of the extended real addition of their sizes, analogous to hashun 14431. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
Assertion
Ref Expression
hashunx ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))

Proof of Theorem hashunx
StepHypRef Expression
1 hashun 14431 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
213expa 1118 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
3 hashcl 14405 . . . . . . . . . 10 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
43nn0red 12614 . . . . . . . . 9 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ)
5 hashcl 14405 . . . . . . . . . 10 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
65nn0red 12614 . . . . . . . . 9 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℝ)
74, 6anim12i 612 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
87adantr 480 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → ((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
9 rexadd 13294 . . . . . . 7 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
108, 9syl 17 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
1110eqcomd 2746 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
122, 11eqtrd 2780 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
1312expcom 413 . . 3 ((𝐴𝐵) = ∅ → ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
14133ad2ant3 1135 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
15 unexg 7778 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
16 unfir 9374 . . . . . . 7 ((𝐴𝐵) ∈ Fin → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
1716con3i 154 . . . . . 6 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴𝐵) ∈ Fin)
18 hashinf 14384 . . . . . 6 (((𝐴𝐵) ∈ V ∧ ¬ (𝐴𝐵) ∈ Fin) → (♯‘(𝐴𝐵)) = +∞)
1915, 17, 18syl2anr 596 . . . . 5 ((¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝑉𝐵𝑊)) → (♯‘(𝐴𝐵)) = +∞)
20 ianor 982 . . . . . . 7 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ↔ (¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin))
21 simprl 770 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐴𝑉)
22 simprr 772 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐵𝑊)
23 hashnfinnn0 14410 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) ∉ ℕ0)
2423ex 412 . . . . . . . . . . . . 13 (𝐴𝑉 → (¬ 𝐴 ∈ Fin → (♯‘𝐴) ∉ ℕ0))
2524adantr 480 . . . . . . . . . . . 12 ((𝐴𝑉𝐵𝑊) → (¬ 𝐴 ∈ Fin → (♯‘𝐴) ∉ ℕ0))
2625impcom 407 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → (♯‘𝐴) ∉ ℕ0)
27 hashinfxadd 14434 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
2821, 22, 26, 27syl3anc 1371 . . . . . . . . . 10 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
2928eqcomd 2746 . . . . . . . . 9 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
3029ex 412 . . . . . . . 8 𝐴 ∈ Fin → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
31 hashxrcl 14406 . . . . . . . . . . . . . 14 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
32 hashxrcl 14406 . . . . . . . . . . . . . 14 (𝐵𝑊 → (♯‘𝐵) ∈ ℝ*)
3331, 32anim12i 612 . . . . . . . . . . . . 13 ((𝐴𝑉𝐵𝑊) → ((♯‘𝐴) ∈ ℝ* ∧ (♯‘𝐵) ∈ ℝ*))
3433adantl 481 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) ∈ ℝ* ∧ (♯‘𝐵) ∈ ℝ*))
35 xaddcom 13302 . . . . . . . . . . . 12 (((♯‘𝐴) ∈ ℝ* ∧ (♯‘𝐵) ∈ ℝ*) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐵) +𝑒 (♯‘𝐴)))
3634, 35syl 17 . . . . . . . . . . 11 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐵) +𝑒 (♯‘𝐴)))
37 simprr 772 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐵𝑊)
38 simprl 770 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐴𝑉)
39 hashnfinnn0 14410 . . . . . . . . . . . . . . 15 ((𝐵𝑊 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) ∉ ℕ0)
4039ex 412 . . . . . . . . . . . . . 14 (𝐵𝑊 → (¬ 𝐵 ∈ Fin → (♯‘𝐵) ∉ ℕ0))
4140adantl 481 . . . . . . . . . . . . 13 ((𝐴𝑉𝐵𝑊) → (¬ 𝐵 ∈ Fin → (♯‘𝐵) ∉ ℕ0))
4241impcom 407 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → (♯‘𝐵) ∉ ℕ0)
43 hashinfxadd 14434 . . . . . . . . . . . 12 ((𝐵𝑊𝐴𝑉 ∧ (♯‘𝐵) ∉ ℕ0) → ((♯‘𝐵) +𝑒 (♯‘𝐴)) = +∞)
4437, 38, 42, 43syl3anc 1371 . . . . . . . . . . 11 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐵) +𝑒 (♯‘𝐴)) = +∞)
4536, 44eqtrd 2780 . . . . . . . . . 10 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
4645eqcomd 2746 . . . . . . . . 9 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
4746ex 412 . . . . . . . 8 𝐵 ∈ Fin → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
4830, 47jaoi 856 . . . . . . 7 ((¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin) → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
4920, 48sylbi 217 . . . . . 6 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
5049imp 406 . . . . 5 ((¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝑉𝐵𝑊)) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
5119, 50eqtrd 2780 . . . 4 ((¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝑉𝐵𝑊)) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
5251expcom 413 . . 3 ((𝐴𝑉𝐵𝑊) → (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
53523adant3 1132 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
5414, 53pm2.61d 179 1 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wnel 3052  Vcvv 3488  cun 3974  cin 3975  c0 4352  cfv 6573  (class class class)co 7448  Fincfn 9003  cr 11183   + caddc 11187  +∞cpnf 11321  *cxr 11323  0cn0 12553   +𝑒 cxad 13173  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-xadd 13176  df-hash 14380
This theorem is referenced by:  hashunsngx  14442  vtxdun  29517  vtxdginducedm1  29579  dimkerim  33640
  Copyright terms: Public domain W3C validator