MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashunx Structured version   Visualization version   GIF version

Theorem hashunx 14286
Description: The size of the union of disjoint sets is the result of the extended real addition of their sizes, analogous to hashun 14282. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
Assertion
Ref Expression
hashunx ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))

Proof of Theorem hashunx
StepHypRef Expression
1 hashun 14282 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
213expa 1118 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
3 hashcl 14256 . . . . . . . . . 10 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
43nn0red 12474 . . . . . . . . 9 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ)
5 hashcl 14256 . . . . . . . . . 10 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
65nn0red 12474 . . . . . . . . 9 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℝ)
74, 6anim12i 613 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
87adantr 481 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → ((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
9 rexadd 13151 . . . . . . 7 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
108, 9syl 17 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
1110eqcomd 2742 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
122, 11eqtrd 2776 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
1312expcom 414 . . 3 ((𝐴𝐵) = ∅ → ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
14133ad2ant3 1135 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
15 unexg 7683 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
16 unfir 9258 . . . . . . 7 ((𝐴𝐵) ∈ Fin → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
1716con3i 154 . . . . . 6 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴𝐵) ∈ Fin)
18 hashinf 14235 . . . . . 6 (((𝐴𝐵) ∈ V ∧ ¬ (𝐴𝐵) ∈ Fin) → (♯‘(𝐴𝐵)) = +∞)
1915, 17, 18syl2anr 597 . . . . 5 ((¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝑉𝐵𝑊)) → (♯‘(𝐴𝐵)) = +∞)
20 ianor 980 . . . . . . 7 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ↔ (¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin))
21 simprl 769 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐴𝑉)
22 simprr 771 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐵𝑊)
23 hashnfinnn0 14261 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) ∉ ℕ0)
2423ex 413 . . . . . . . . . . . . 13 (𝐴𝑉 → (¬ 𝐴 ∈ Fin → (♯‘𝐴) ∉ ℕ0))
2524adantr 481 . . . . . . . . . . . 12 ((𝐴𝑉𝐵𝑊) → (¬ 𝐴 ∈ Fin → (♯‘𝐴) ∉ ℕ0))
2625impcom 408 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → (♯‘𝐴) ∉ ℕ0)
27 hashinfxadd 14285 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
2821, 22, 26, 27syl3anc 1371 . . . . . . . . . 10 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
2928eqcomd 2742 . . . . . . . . 9 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
3029ex 413 . . . . . . . 8 𝐴 ∈ Fin → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
31 hashxrcl 14257 . . . . . . . . . . . . . 14 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
32 hashxrcl 14257 . . . . . . . . . . . . . 14 (𝐵𝑊 → (♯‘𝐵) ∈ ℝ*)
3331, 32anim12i 613 . . . . . . . . . . . . 13 ((𝐴𝑉𝐵𝑊) → ((♯‘𝐴) ∈ ℝ* ∧ (♯‘𝐵) ∈ ℝ*))
3433adantl 482 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) ∈ ℝ* ∧ (♯‘𝐵) ∈ ℝ*))
35 xaddcom 13159 . . . . . . . . . . . 12 (((♯‘𝐴) ∈ ℝ* ∧ (♯‘𝐵) ∈ ℝ*) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐵) +𝑒 (♯‘𝐴)))
3634, 35syl 17 . . . . . . . . . . 11 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐵) +𝑒 (♯‘𝐴)))
37 simprr 771 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐵𝑊)
38 simprl 769 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐴𝑉)
39 hashnfinnn0 14261 . . . . . . . . . . . . . . 15 ((𝐵𝑊 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) ∉ ℕ0)
4039ex 413 . . . . . . . . . . . . . 14 (𝐵𝑊 → (¬ 𝐵 ∈ Fin → (♯‘𝐵) ∉ ℕ0))
4140adantl 482 . . . . . . . . . . . . 13 ((𝐴𝑉𝐵𝑊) → (¬ 𝐵 ∈ Fin → (♯‘𝐵) ∉ ℕ0))
4241impcom 408 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → (♯‘𝐵) ∉ ℕ0)
43 hashinfxadd 14285 . . . . . . . . . . . 12 ((𝐵𝑊𝐴𝑉 ∧ (♯‘𝐵) ∉ ℕ0) → ((♯‘𝐵) +𝑒 (♯‘𝐴)) = +∞)
4437, 38, 42, 43syl3anc 1371 . . . . . . . . . . 11 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐵) +𝑒 (♯‘𝐴)) = +∞)
4536, 44eqtrd 2776 . . . . . . . . . 10 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
4645eqcomd 2742 . . . . . . . . 9 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
4746ex 413 . . . . . . . 8 𝐵 ∈ Fin → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
4830, 47jaoi 855 . . . . . . 7 ((¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin) → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
4920, 48sylbi 216 . . . . . 6 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
5049imp 407 . . . . 5 ((¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝑉𝐵𝑊)) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
5119, 50eqtrd 2776 . . . 4 ((¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝑉𝐵𝑊)) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
5251expcom 414 . . 3 ((𝐴𝑉𝐵𝑊) → (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
53523adant3 1132 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
5414, 53pm2.61d 179 1 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wnel 3049  Vcvv 3445  cun 3908  cin 3909  c0 4282  cfv 6496  (class class class)co 7357  Fincfn 8883  cr 11050   + caddc 11054  +∞cpnf 11186  *cxr 11188  0cn0 12413   +𝑒 cxad 13031  chash 14230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-xadd 13034  df-hash 14231
This theorem is referenced by:  hashunsngx  14293  vtxdun  28429  vtxdginducedm1  28491  dimkerim  32322
  Copyright terms: Public domain W3C validator