MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashunx Structured version   Visualization version   GIF version

Theorem hashunx 13740
Description: The size of the union of disjoint sets is the result of the extended real addition of their sizes, analogous to hashun 13736. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
Assertion
Ref Expression
hashunx ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))

Proof of Theorem hashunx
StepHypRef Expression
1 hashun 13736 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
213expa 1112 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
3 hashcl 13710 . . . . . . . . . 10 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
43nn0red 11948 . . . . . . . . 9 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ)
5 hashcl 13710 . . . . . . . . . 10 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
65nn0red 11948 . . . . . . . . 9 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℝ)
74, 6anim12i 612 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
87adantr 481 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → ((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
9 rexadd 12618 . . . . . . 7 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
108, 9syl 17 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
1110eqcomd 2831 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
122, 11eqtrd 2860 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
1312expcom 414 . . 3 ((𝐴𝐵) = ∅ → ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
14133ad2ant3 1129 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
15 unexg 7464 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
16 unfir 8778 . . . . . . 7 ((𝐴𝐵) ∈ Fin → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
1716con3i 157 . . . . . 6 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴𝐵) ∈ Fin)
18 hashinf 13688 . . . . . 6 (((𝐴𝐵) ∈ V ∧ ¬ (𝐴𝐵) ∈ Fin) → (♯‘(𝐴𝐵)) = +∞)
1915, 17, 18syl2anr 596 . . . . 5 ((¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝑉𝐵𝑊)) → (♯‘(𝐴𝐵)) = +∞)
20 ianor 977 . . . . . . 7 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ↔ (¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin))
21 simprl 767 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐴𝑉)
22 simprr 769 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐵𝑊)
23 hashnfinnn0 13715 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) ∉ ℕ0)
2423ex 413 . . . . . . . . . . . . 13 (𝐴𝑉 → (¬ 𝐴 ∈ Fin → (♯‘𝐴) ∉ ℕ0))
2524adantr 481 . . . . . . . . . . . 12 ((𝐴𝑉𝐵𝑊) → (¬ 𝐴 ∈ Fin → (♯‘𝐴) ∉ ℕ0))
2625impcom 408 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → (♯‘𝐴) ∉ ℕ0)
27 hashinfxadd 13739 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
2821, 22, 26, 27syl3anc 1365 . . . . . . . . . 10 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
2928eqcomd 2831 . . . . . . . . 9 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
3029ex 413 . . . . . . . 8 𝐴 ∈ Fin → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
31 hashxrcl 13711 . . . . . . . . . . . . . 14 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
32 hashxrcl 13711 . . . . . . . . . . . . . 14 (𝐵𝑊 → (♯‘𝐵) ∈ ℝ*)
3331, 32anim12i 612 . . . . . . . . . . . . 13 ((𝐴𝑉𝐵𝑊) → ((♯‘𝐴) ∈ ℝ* ∧ (♯‘𝐵) ∈ ℝ*))
3433adantl 482 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) ∈ ℝ* ∧ (♯‘𝐵) ∈ ℝ*))
35 xaddcom 12626 . . . . . . . . . . . 12 (((♯‘𝐴) ∈ ℝ* ∧ (♯‘𝐵) ∈ ℝ*) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐵) +𝑒 (♯‘𝐴)))
3634, 35syl 17 . . . . . . . . . . 11 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐵) +𝑒 (♯‘𝐴)))
37 simprr 769 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐵𝑊)
38 simprl 767 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐴𝑉)
39 hashnfinnn0 13715 . . . . . . . . . . . . . . 15 ((𝐵𝑊 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) ∉ ℕ0)
4039ex 413 . . . . . . . . . . . . . 14 (𝐵𝑊 → (¬ 𝐵 ∈ Fin → (♯‘𝐵) ∉ ℕ0))
4140adantl 482 . . . . . . . . . . . . 13 ((𝐴𝑉𝐵𝑊) → (¬ 𝐵 ∈ Fin → (♯‘𝐵) ∉ ℕ0))
4241impcom 408 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → (♯‘𝐵) ∉ ℕ0)
43 hashinfxadd 13739 . . . . . . . . . . . 12 ((𝐵𝑊𝐴𝑉 ∧ (♯‘𝐵) ∉ ℕ0) → ((♯‘𝐵) +𝑒 (♯‘𝐴)) = +∞)
4437, 38, 42, 43syl3anc 1365 . . . . . . . . . . 11 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐵) +𝑒 (♯‘𝐴)) = +∞)
4536, 44eqtrd 2860 . . . . . . . . . 10 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
4645eqcomd 2831 . . . . . . . . 9 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
4746ex 413 . . . . . . . 8 𝐵 ∈ Fin → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
4830, 47jaoi 853 . . . . . . 7 ((¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin) → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
4920, 48sylbi 218 . . . . . 6 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
5049imp 407 . . . . 5 ((¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝑉𝐵𝑊)) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
5119, 50eqtrd 2860 . . . 4 ((¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝑉𝐵𝑊)) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
5251expcom 414 . . 3 ((𝐴𝑉𝐵𝑊) → (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
53523adant3 1126 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
5414, 53pm2.61d 180 1 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  wnel 3127  Vcvv 3499  cun 3937  cin 3938  c0 4294  cfv 6351  (class class class)co 7151  Fincfn 8501  cr 10528   + caddc 10532  +∞cpnf 10664  *cxr 10666  0cn0 11889   +𝑒 cxad 12498  chash 13683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-xadd 12501  df-hash 13684
This theorem is referenced by:  hashunsngx  13747  vtxdun  27179  vtxdginducedm1  27241  dimkerim  30911
  Copyright terms: Public domain W3C validator