MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashunx Structured version   Visualization version   GIF version

Theorem hashunx 14385
Description: The size of the union of disjoint sets is the result of the extended real addition of their sizes, analogous to hashun 14381. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
Assertion
Ref Expression
hashunx ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))

Proof of Theorem hashunx
StepHypRef Expression
1 hashun 14381 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
213expa 1115 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
3 hashcl 14355 . . . . . . . . . 10 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
43nn0red 12571 . . . . . . . . 9 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ)
5 hashcl 14355 . . . . . . . . . 10 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
65nn0red 12571 . . . . . . . . 9 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℝ)
74, 6anim12i 611 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
87adantr 479 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → ((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
9 rexadd 13251 . . . . . . 7 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
108, 9syl 17 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
1110eqcomd 2734 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
122, 11eqtrd 2768 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
1312expcom 412 . . 3 ((𝐴𝐵) = ∅ → ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
14133ad2ant3 1132 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
15 unexg 7757 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
16 unfir 9345 . . . . . . 7 ((𝐴𝐵) ∈ Fin → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
1716con3i 154 . . . . . 6 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴𝐵) ∈ Fin)
18 hashinf 14334 . . . . . 6 (((𝐴𝐵) ∈ V ∧ ¬ (𝐴𝐵) ∈ Fin) → (♯‘(𝐴𝐵)) = +∞)
1915, 17, 18syl2anr 595 . . . . 5 ((¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝑉𝐵𝑊)) → (♯‘(𝐴𝐵)) = +∞)
20 ianor 979 . . . . . . 7 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ↔ (¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin))
21 simprl 769 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐴𝑉)
22 simprr 771 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐵𝑊)
23 hashnfinnn0 14360 . . . . . . . . . . . . . 14 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) ∉ ℕ0)
2423ex 411 . . . . . . . . . . . . 13 (𝐴𝑉 → (¬ 𝐴 ∈ Fin → (♯‘𝐴) ∉ ℕ0))
2524adantr 479 . . . . . . . . . . . 12 ((𝐴𝑉𝐵𝑊) → (¬ 𝐴 ∈ Fin → (♯‘𝐴) ∉ ℕ0))
2625impcom 406 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → (♯‘𝐴) ∉ ℕ0)
27 hashinfxadd 14384 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
2821, 22, 26, 27syl3anc 1368 . . . . . . . . . 10 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
2928eqcomd 2734 . . . . . . . . 9 ((¬ 𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
3029ex 411 . . . . . . . 8 𝐴 ∈ Fin → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
31 hashxrcl 14356 . . . . . . . . . . . . . 14 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
32 hashxrcl 14356 . . . . . . . . . . . . . 14 (𝐵𝑊 → (♯‘𝐵) ∈ ℝ*)
3331, 32anim12i 611 . . . . . . . . . . . . 13 ((𝐴𝑉𝐵𝑊) → ((♯‘𝐴) ∈ ℝ* ∧ (♯‘𝐵) ∈ ℝ*))
3433adantl 480 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) ∈ ℝ* ∧ (♯‘𝐵) ∈ ℝ*))
35 xaddcom 13259 . . . . . . . . . . . 12 (((♯‘𝐴) ∈ ℝ* ∧ (♯‘𝐵) ∈ ℝ*) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐵) +𝑒 (♯‘𝐴)))
3634, 35syl 17 . . . . . . . . . . 11 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = ((♯‘𝐵) +𝑒 (♯‘𝐴)))
37 simprr 771 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐵𝑊)
38 simprl 769 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → 𝐴𝑉)
39 hashnfinnn0 14360 . . . . . . . . . . . . . . 15 ((𝐵𝑊 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) ∉ ℕ0)
4039ex 411 . . . . . . . . . . . . . 14 (𝐵𝑊 → (¬ 𝐵 ∈ Fin → (♯‘𝐵) ∉ ℕ0))
4140adantl 480 . . . . . . . . . . . . 13 ((𝐴𝑉𝐵𝑊) → (¬ 𝐵 ∈ Fin → (♯‘𝐵) ∉ ℕ0))
4241impcom 406 . . . . . . . . . . . 12 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → (♯‘𝐵) ∉ ℕ0)
43 hashinfxadd 14384 . . . . . . . . . . . 12 ((𝐵𝑊𝐴𝑉 ∧ (♯‘𝐵) ∉ ℕ0) → ((♯‘𝐵) +𝑒 (♯‘𝐴)) = +∞)
4437, 38, 42, 43syl3anc 1368 . . . . . . . . . . 11 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐵) +𝑒 (♯‘𝐴)) = +∞)
4536, 44eqtrd 2768 . . . . . . . . . 10 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
4645eqcomd 2734 . . . . . . . . 9 ((¬ 𝐵 ∈ Fin ∧ (𝐴𝑉𝐵𝑊)) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
4746ex 411 . . . . . . . 8 𝐵 ∈ Fin → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
4830, 47jaoi 855 . . . . . . 7 ((¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin) → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
4920, 48sylbi 216 . . . . . 6 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴𝑉𝐵𝑊) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
5049imp 405 . . . . 5 ((¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝑉𝐵𝑊)) → +∞ = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
5119, 50eqtrd 2768 . . . 4 ((¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝑉𝐵𝑊)) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
5251expcom 412 . . 3 ((𝐴𝑉𝐵𝑊) → (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
53523adant3 1129 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))))
5414, 53pm2.61d 179 1 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wnel 3043  Vcvv 3473  cun 3947  cin 3948  c0 4326  cfv 6553  (class class class)co 7426  Fincfn 8970  cr 11145   + caddc 11149  +∞cpnf 11283  *cxr 11285  0cn0 12510   +𝑒 cxad 13130  chash 14329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-oadd 8497  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-xadd 13133  df-hash 14330
This theorem is referenced by:  hashunsngx  14392  vtxdun  29315  vtxdginducedm1  29377  dimkerim  33358
  Copyright terms: Public domain W3C validator