![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hash0 | Structured version Visualization version GIF version |
Description: The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.) |
Ref | Expression |
---|---|
hash0 | ⊢ (♯‘∅) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . 2 ⊢ ∅ = ∅ | |
2 | 0ex 5313 | . . 3 ⊢ ∅ ∈ V | |
3 | hasheq0 14399 | . . 3 ⊢ (∅ ∈ V → ((♯‘∅) = 0 ↔ ∅ = ∅)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((♯‘∅) = 0 ↔ ∅ = ∅) |
5 | 1, 4 | mpbir 231 | 1 ⊢ (♯‘∅) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 ‘cfv 6563 0cc0 11153 ♯chash 14366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-hash 14367 |
This theorem is referenced by: hashrabrsn 14408 hashrabsn01 14409 hashrabsn1 14410 hashge0 14423 elprchashprn2 14432 hash1 14440 hashsn01 14452 hashgt12el 14458 hashgt12el2 14459 hashfzo 14465 hashfzp1 14467 hashxplem 14469 hashmap 14471 hashbc 14489 hashf1lem2 14492 hashf1 14493 hash2pwpr 14512 wrdnfi 14583 lsw0g 14601 ccatlid 14621 ccatrid 14622 rev0 14799 repswsymballbi 14815 fsumconst 15823 incexclem 15869 incexc 15870 fprodconst 16011 sumodd 16422 hashgcdeq 16823 prmreclem4 16953 prmreclem5 16954 0hashbc 17041 ramz2 17058 cshws0 17136 psgnunilem2 19528 psgnunilem4 19530 psgn0fv0 19544 psgnsn 19553 psgnprfval1 19555 efginvrel2 19760 efgredleme 19776 efgcpbllemb 19788 frgpnabllem1 19906 gsumconst 19967 ltbwe 22080 fta1g 26224 fta1 26365 birthdaylem3 27011 ppi1 27222 musum 27249 rpvmasum 27585 umgrislfupgrlem 29154 lfuhgr1v0e 29286 vtxdg0e 29507 vtxdlfgrval 29518 rusgr1vtxlem 29620 wspn0 29954 rusgrnumwwlkl1 29998 rusgr0edg 30003 clwwlknonel 30124 clwwlknon1le1 30130 0ewlk 30143 0wlk 30145 0wlkon 30149 0pth 30154 0clwlk 30159 0crct 30162 0cycl 30163 eupth0 30243 eulerpathpr 30269 wlkl0 30396 f1ocnt 32810 hashxpe 32817 chnub 32986 1arithidom 33545 lvecdim0 33634 fldext2chn 33734 esumcst 34044 cntmeas 34207 ballotlemfval0 34477 signsvtn0 34564 signstfvneq0 34566 signstfveq0 34571 signsvf0 34574 lpadright 34678 derangsn 35155 subfacp1lem6 35170 poimirlem25 37632 poimirlem26 37633 poimirlem27 37634 poimirlem28 37635 unitscyglem4 42180 rp-isfinite6 43508 fzisoeu 45251 upwordnul 46834 |
Copyright terms: Public domain | W3C validator |