| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hash0 | Structured version Visualization version GIF version | ||
| Description: The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.) |
| Ref | Expression |
|---|---|
| hash0 | ⊢ (♯‘∅) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ ∅ = ∅ | |
| 2 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 3 | hasheq0 14328 | . . 3 ⊢ (∅ ∈ V → ((♯‘∅) = 0 ↔ ∅ = ∅)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((♯‘∅) = 0 ↔ ∅ = ∅) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ (♯‘∅) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ‘cfv 6511 0cc0 11068 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 |
| This theorem is referenced by: hashrabrsn 14337 hashrabsn01 14338 hashrabsn1 14339 hashge0 14352 elprchashprn2 14361 hash1 14369 hashsn01 14381 hashgt12el 14387 hashgt12el2 14388 hashfzo 14394 hashfzp1 14396 hashxplem 14398 hashmap 14400 hashbc 14418 hashf1lem2 14421 hashf1 14422 hash2pwpr 14441 wrdnfi 14513 lsw0g 14531 ccatlid 14551 ccatrid 14552 rev0 14729 repswsymballbi 14745 fsumconst 15756 incexclem 15802 incexc 15803 fprodconst 15944 sumodd 16358 hashgcdeq 16760 prmreclem4 16890 prmreclem5 16891 0hashbc 16978 ramz2 16995 cshws0 17072 psgnunilem2 19425 psgnunilem4 19427 psgn0fv0 19441 psgnsn 19450 psgnprfval1 19452 efginvrel2 19657 efgredleme 19673 efgcpbllemb 19685 frgpnabllem1 19803 gsumconst 19864 ltbwe 21951 fta1g 26075 fta1 26216 birthdaylem3 26863 ppi1 27074 musum 27101 rpvmasum 27437 umgrislfupgrlem 29049 lfuhgr1v0e 29181 vtxdg0e 29402 vtxdlfgrval 29413 rusgr1vtxlem 29515 wspn0 29854 rusgrnumwwlkl1 29898 rusgr0edg 29903 clwwlknonel 30024 clwwlknon1le1 30030 0ewlk 30043 0wlk 30045 0wlkon 30049 0pth 30054 0clwlk 30059 0crct 30062 0cycl 30063 eupth0 30143 eulerpathpr 30169 wlkl0 30296 f1ocnt 32725 hashxpe 32732 chnub 32938 chnccats1 32941 1arithidom 33508 lvecdim0 33602 fldext2chn 33718 esumcst 34053 cntmeas 34216 ballotlemfval0 34487 signsvtn0 34561 signstfvneq0 34563 signstfveq0 34568 signsvf0 34571 lpadright 34675 derangsn 35157 subfacp1lem6 35172 poimirlem25 37639 poimirlem26 37640 poimirlem27 37641 poimirlem28 37642 unitscyglem4 42186 rp-isfinite6 43507 fzisoeu 45298 upwordnul 46878 |
| Copyright terms: Public domain | W3C validator |