| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hash0 | Structured version Visualization version GIF version | ||
| Description: The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.) |
| Ref | Expression |
|---|---|
| hash0 | ⊢ (♯‘∅) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . 2 ⊢ ∅ = ∅ | |
| 2 | 0ex 5289 | . . 3 ⊢ ∅ ∈ V | |
| 3 | hasheq0 14385 | . . 3 ⊢ (∅ ∈ V → ((♯‘∅) = 0 ↔ ∅ = ∅)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((♯‘∅) = 0 ↔ ∅ = ∅) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ (♯‘∅) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ∅c0 4315 ‘cfv 6542 0cc0 11138 ♯chash 14352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-hash 14353 |
| This theorem is referenced by: hashrabrsn 14394 hashrabsn01 14395 hashrabsn1 14396 hashge0 14409 elprchashprn2 14418 hash1 14426 hashsn01 14438 hashgt12el 14444 hashgt12el2 14445 hashfzo 14451 hashfzp1 14453 hashxplem 14455 hashmap 14457 hashbc 14475 hashf1lem2 14478 hashf1 14479 hash2pwpr 14498 wrdnfi 14569 lsw0g 14587 ccatlid 14607 ccatrid 14608 rev0 14785 repswsymballbi 14801 fsumconst 15809 incexclem 15855 incexc 15856 fprodconst 15997 sumodd 16408 hashgcdeq 16810 prmreclem4 16940 prmreclem5 16941 0hashbc 17028 ramz2 17045 cshws0 17122 psgnunilem2 19486 psgnunilem4 19488 psgn0fv0 19502 psgnsn 19511 psgnprfval1 19513 efginvrel2 19718 efgredleme 19734 efgcpbllemb 19746 frgpnabllem1 19864 gsumconst 19925 ltbwe 22029 fta1g 26164 fta1 26305 birthdaylem3 26951 ppi1 27162 musum 27189 rpvmasum 27525 umgrislfupgrlem 29086 lfuhgr1v0e 29218 vtxdg0e 29439 vtxdlfgrval 29450 rusgr1vtxlem 29552 wspn0 29891 rusgrnumwwlkl1 29935 rusgr0edg 29940 clwwlknonel 30061 clwwlknon1le1 30067 0ewlk 30080 0wlk 30082 0wlkon 30086 0pth 30091 0clwlk 30096 0crct 30099 0cycl 30100 eupth0 30180 eulerpathpr 30206 wlkl0 30333 f1ocnt 32751 hashxpe 32758 chnub 32948 chnccats1 32951 1arithidom 33506 lvecdim0 33598 fldext2chn 33710 esumcst 34005 cntmeas 34168 ballotlemfval0 34439 signsvtn0 34526 signstfvneq0 34528 signstfveq0 34533 signsvf0 34536 lpadright 34640 derangsn 35116 subfacp1lem6 35131 poimirlem25 37593 poimirlem26 37594 poimirlem27 37595 poimirlem28 37596 unitscyglem4 42140 rp-isfinite6 43476 fzisoeu 45257 upwordnul 46840 |
| Copyright terms: Public domain | W3C validator |