Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hash0 | Structured version Visualization version GIF version |
Description: The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.) |
Ref | Expression |
---|---|
hash0 | ⊢ (♯‘∅) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ ∅ = ∅ | |
2 | 0ex 5231 | . . 3 ⊢ ∅ ∈ V | |
3 | hasheq0 14078 | . . 3 ⊢ (∅ ∈ V → ((♯‘∅) = 0 ↔ ∅ = ∅)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((♯‘∅) = 0 ↔ ∅ = ∅) |
5 | 1, 4 | mpbir 230 | 1 ⊢ (♯‘∅) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ‘cfv 6433 0cc0 10871 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-hash 14045 |
This theorem is referenced by: hashrabrsn 14087 hashrabsn01 14088 hashrabsn1 14089 hashge0 14102 elprchashprn2 14111 hash1 14119 hashsn01 14131 hashgt12el 14137 hashgt12el2 14138 hashfzo 14144 hashfzp1 14146 hashxplem 14148 hashmap 14150 hashbc 14165 hashf1lem2 14170 hashf1 14171 hash2pwpr 14190 wrdnfi 14251 lsw0g 14269 ccatlid 14291 ccatrid 14292 rev0 14477 repswsymballbi 14493 fsumconst 15502 incexclem 15548 incexc 15549 fprodconst 15688 sumodd 16097 hashgcdeq 16490 prmreclem4 16620 prmreclem5 16621 0hashbc 16708 ramz2 16725 cshws0 16803 psgnunilem2 19103 psgnunilem4 19105 psgn0fv0 19119 psgnsn 19128 psgnprfval1 19130 efginvrel2 19333 efgredleme 19349 efgcpbllemb 19361 frgpnabllem1 19474 gsumconst 19535 ltbwe 21245 fta1g 25332 fta1 25468 birthdaylem3 26103 ppi1 26313 musum 26340 rpvmasum 26674 umgrislfupgrlem 27492 lfuhgr1v0e 27621 vtxdg0e 27841 vtxdlfgrval 27852 rusgr1vtxlem 27954 wspn0 28289 rusgrnumwwlkl1 28333 rusgr0edg 28338 clwwlknonel 28459 clwwlknon1le1 28465 0ewlk 28478 0wlk 28480 0wlkon 28484 0pth 28489 0clwlk 28494 0crct 28497 0cycl 28498 eupth0 28578 eulerpathpr 28604 wlkl0 28731 f1ocnt 31123 hashxpe 31127 lvecdim0 31690 esumcst 32031 cntmeas 32194 ballotlemfval0 32462 signsvtn0 32549 signstfvneq0 32551 signstfveq0 32556 signsvf0 32559 lpadright 32664 derangsn 33132 subfacp1lem6 33147 poimirlem25 35802 poimirlem26 35803 poimirlem27 35804 poimirlem28 35805 rp-isfinite6 41125 fzisoeu 42839 upwordnul 46515 |
Copyright terms: Public domain | W3C validator |