Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hash0 | Structured version Visualization version GIF version |
Description: The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.) |
Ref | Expression |
---|---|
hash0 | ⊢ (♯‘∅) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ ∅ = ∅ | |
2 | 0ex 5226 | . . 3 ⊢ ∅ ∈ V | |
3 | hasheq0 14006 | . . 3 ⊢ (∅ ∈ V → ((♯‘∅) = 0 ↔ ∅ = ∅)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((♯‘∅) = 0 ↔ ∅ = ∅) |
5 | 1, 4 | mpbir 230 | 1 ⊢ (♯‘∅) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ‘cfv 6418 0cc0 10802 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 |
This theorem is referenced by: hashrabrsn 14015 hashrabsn01 14016 hashrabsn1 14017 hashge0 14030 elprchashprn2 14039 hash1 14047 hashsn01 14059 hashgt12el 14065 hashgt12el2 14066 hashfzo 14072 hashfzp1 14074 hashxplem 14076 hashmap 14078 hashbc 14093 hashf1lem2 14098 hashf1 14099 hash2pwpr 14118 wrdnfi 14179 lsw0g 14197 ccatlid 14219 ccatrid 14220 rev0 14405 repswsymballbi 14421 fsumconst 15430 incexclem 15476 incexc 15477 fprodconst 15616 sumodd 16025 hashgcdeq 16418 prmreclem4 16548 prmreclem5 16549 0hashbc 16636 ramz2 16653 cshws0 16731 psgnunilem2 19018 psgnunilem4 19020 psgn0fv0 19034 psgnsn 19043 psgnprfval1 19045 efginvrel2 19248 efgredleme 19264 efgcpbllemb 19276 frgpnabllem1 19389 gsumconst 19450 ltbwe 21155 fta1g 25237 fta1 25373 birthdaylem3 26008 ppi1 26218 musum 26245 rpvmasum 26579 umgrislfupgrlem 27395 lfuhgr1v0e 27524 vtxdg0e 27744 vtxdlfgrval 27755 rusgr1vtxlem 27857 wspn0 28190 rusgrnumwwlkl1 28234 rusgr0edg 28239 clwwlknonel 28360 clwwlknon1le1 28366 0ewlk 28379 0wlk 28381 0wlkon 28385 0pth 28390 0clwlk 28395 0crct 28398 0cycl 28399 eupth0 28479 eulerpathpr 28505 wlkl0 28632 f1ocnt 31025 hashxpe 31029 lvecdim0 31592 esumcst 31931 cntmeas 32094 ballotlemfval0 32362 signsvtn0 32449 signstfvneq0 32451 signstfveq0 32456 signsvf0 32459 lpadright 32564 derangsn 33032 subfacp1lem6 33047 poimirlem25 35729 poimirlem26 35730 poimirlem27 35731 poimirlem28 35732 rp-isfinite6 41023 fzisoeu 42729 |
Copyright terms: Public domain | W3C validator |