| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hash0 | Structured version Visualization version GIF version | ||
| Description: The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.) |
| Ref | Expression |
|---|---|
| hash0 | ⊢ (♯‘∅) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . 2 ⊢ ∅ = ∅ | |
| 2 | 0ex 5247 | . . 3 ⊢ ∅ ∈ V | |
| 3 | hasheq0 14272 | . . 3 ⊢ (∅ ∈ V → ((♯‘∅) = 0 ↔ ∅ = ∅)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((♯‘∅) = 0 ↔ ∅ = ∅) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ (♯‘∅) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ‘cfv 6486 0cc0 11013 ♯chash 14239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-hash 14240 |
| This theorem is referenced by: hashrabrsn 14281 hashrabsn01 14282 hashrabsn1 14283 hashge0 14296 elprchashprn2 14305 hash1 14313 hashsn01 14325 hashgt12el 14331 hashgt12el2 14332 hashfzo 14338 hashfzp1 14340 hashxplem 14342 hashmap 14344 hashbc 14362 hashf1lem2 14365 hashf1 14366 hash2pwpr 14385 wrdnfi 14457 lsw0g 14475 ccatlid 14496 ccatrid 14497 rev0 14673 repswsymballbi 14689 fsumconst 15699 incexclem 15745 incexc 15746 fprodconst 15887 sumodd 16301 hashgcdeq 16703 prmreclem4 16833 prmreclem5 16834 0hashbc 16921 ramz2 16938 cshws0 17015 chnub 18530 chnccats1 18533 chnccat 18534 psgnunilem2 19409 psgnunilem4 19411 psgn0fv0 19425 psgnsn 19434 psgnprfval1 19436 efginvrel2 19641 efgredleme 19657 efgcpbllemb 19669 frgpnabllem1 19787 gsumconst 19848 ltbwe 21980 fta1g 26103 fta1 26244 birthdaylem3 26891 ppi1 27102 musum 27129 rpvmasum 27465 umgrislfupgrlem 29102 lfuhgr1v0e 29234 vtxdg0e 29455 vtxdlfgrval 29466 rusgr1vtxlem 29568 wspn0 29904 rusgrnumwwlkl1 29951 rusgr0edg 29956 clwwlknonel 30077 clwwlknon1le1 30083 0ewlk 30096 0wlk 30098 0wlkon 30102 0pth 30107 0clwlk 30112 0crct 30115 0cycl 30116 eupth0 30196 eulerpathpr 30222 wlkl0 30349 f1ocnt 32787 hashxpe 32794 1arithidom 33509 lvecdim0 33640 fldext2chn 33762 esumcst 34097 cntmeas 34260 ballotlemfval0 34530 signsvtn0 34604 signstfvneq0 34606 signstfveq0 34611 signsvf0 34614 lpadright 34718 derangsn 35235 subfacp1lem6 35250 poimirlem25 37706 poimirlem26 37707 poimirlem27 37708 poimirlem28 37709 unitscyglem4 42312 rp-isfinite6 43636 fzisoeu 45426 chnerlem1 47005 |
| Copyright terms: Public domain | W3C validator |