| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hash0 | Structured version Visualization version GIF version | ||
| Description: The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.) |
| Ref | Expression |
|---|---|
| hash0 | ⊢ (♯‘∅) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ ∅ = ∅ | |
| 2 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 3 | hasheq0 14288 | . . 3 ⊢ (∅ ∈ V → ((♯‘∅) = 0 ↔ ∅ = ∅)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((♯‘∅) = 0 ↔ ∅ = ∅) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ (♯‘∅) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 ‘cfv 6486 0cc0 11028 ♯chash 14255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-hash 14256 |
| This theorem is referenced by: hashrabrsn 14297 hashrabsn01 14298 hashrabsn1 14299 hashge0 14312 elprchashprn2 14321 hash1 14329 hashsn01 14341 hashgt12el 14347 hashgt12el2 14348 hashfzo 14354 hashfzp1 14356 hashxplem 14358 hashmap 14360 hashbc 14378 hashf1lem2 14381 hashf1 14382 hash2pwpr 14401 wrdnfi 14473 lsw0g 14491 ccatlid 14511 ccatrid 14512 rev0 14688 repswsymballbi 14704 fsumconst 15715 incexclem 15761 incexc 15762 fprodconst 15903 sumodd 16317 hashgcdeq 16719 prmreclem4 16849 prmreclem5 16850 0hashbc 16937 ramz2 16954 cshws0 17031 psgnunilem2 19392 psgnunilem4 19394 psgn0fv0 19408 psgnsn 19417 psgnprfval1 19419 efginvrel2 19624 efgredleme 19640 efgcpbllemb 19652 frgpnabllem1 19770 gsumconst 19831 ltbwe 21967 fta1g 26091 fta1 26232 birthdaylem3 26879 ppi1 27090 musum 27117 rpvmasum 27453 umgrislfupgrlem 29085 lfuhgr1v0e 29217 vtxdg0e 29438 vtxdlfgrval 29449 rusgr1vtxlem 29551 wspn0 29887 rusgrnumwwlkl1 29931 rusgr0edg 29936 clwwlknonel 30057 clwwlknon1le1 30063 0ewlk 30076 0wlk 30078 0wlkon 30082 0pth 30087 0clwlk 30092 0crct 30095 0cycl 30096 eupth0 30176 eulerpathpr 30202 wlkl0 30329 f1ocnt 32758 hashxpe 32765 chnub 32967 chnccats1 32970 1arithidom 33487 lvecdim0 33581 fldext2chn 33697 esumcst 34032 cntmeas 34195 ballotlemfval0 34466 signsvtn0 34540 signstfvneq0 34542 signstfveq0 34547 signsvf0 34550 lpadright 34654 derangsn 35145 subfacp1lem6 35160 poimirlem25 37627 poimirlem26 37628 poimirlem27 37629 poimirlem28 37630 unitscyglem4 42174 rp-isfinite6 43494 fzisoeu 45285 upwordnul 46865 |
| Copyright terms: Public domain | W3C validator |