| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hash0 | Structured version Visualization version GIF version | ||
| Description: The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.) |
| Ref | Expression |
|---|---|
| hash0 | ⊢ (♯‘∅) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . 2 ⊢ ∅ = ∅ | |
| 2 | 0ex 5275 | . . 3 ⊢ ∅ ∈ V | |
| 3 | hasheq0 14371 | . . 3 ⊢ (∅ ∈ V → ((♯‘∅) = 0 ↔ ∅ = ∅)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((♯‘∅) = 0 ↔ ∅ = ∅) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ (♯‘∅) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 Vcvv 3457 ∅c0 4306 ‘cfv 6528 0cc0 11122 ♯chash 14338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-card 9946 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-n0 12495 df-z 12582 df-uz 12846 df-fz 13515 df-hash 14339 |
| This theorem is referenced by: hashrabrsn 14380 hashrabsn01 14381 hashrabsn1 14382 hashge0 14395 elprchashprn2 14404 hash1 14412 hashsn01 14424 hashgt12el 14430 hashgt12el2 14431 hashfzo 14437 hashfzp1 14439 hashxplem 14441 hashmap 14443 hashbc 14461 hashf1lem2 14464 hashf1 14465 hash2pwpr 14484 wrdnfi 14555 lsw0g 14573 ccatlid 14593 ccatrid 14594 rev0 14771 repswsymballbi 14787 fsumconst 15795 incexclem 15841 incexc 15842 fprodconst 15983 sumodd 16394 hashgcdeq 16796 prmreclem4 16926 prmreclem5 16927 0hashbc 17014 ramz2 17031 cshws0 17108 psgnunilem2 19463 psgnunilem4 19465 psgn0fv0 19479 psgnsn 19488 psgnprfval1 19490 efginvrel2 19695 efgredleme 19711 efgcpbllemb 19723 frgpnabllem1 19841 gsumconst 19902 ltbwe 21989 fta1g 26114 fta1 26255 birthdaylem3 26901 ppi1 27112 musum 27139 rpvmasum 27475 umgrislfupgrlem 29035 lfuhgr1v0e 29167 vtxdg0e 29388 vtxdlfgrval 29399 rusgr1vtxlem 29501 wspn0 29840 rusgrnumwwlkl1 29884 rusgr0edg 29889 clwwlknonel 30010 clwwlknon1le1 30016 0ewlk 30029 0wlk 30031 0wlkon 30035 0pth 30040 0clwlk 30045 0crct 30048 0cycl 30049 eupth0 30129 eulerpathpr 30155 wlkl0 30282 f1ocnt 32716 hashxpe 32723 chnub 32930 chnccats1 32933 1arithidom 33489 lvecdim0 33581 fldext2chn 33697 esumcst 34023 cntmeas 34186 ballotlemfval0 34457 signsvtn0 34531 signstfvneq0 34533 signstfveq0 34538 signsvf0 34541 lpadright 34645 derangsn 35121 subfacp1lem6 35136 poimirlem25 37598 poimirlem26 37599 poimirlem27 37600 poimirlem28 37601 unitscyglem4 42140 rp-isfinite6 43474 fzisoeu 45263 upwordnul 46845 |
| Copyright terms: Public domain | W3C validator |