| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hash0 | Structured version Visualization version GIF version | ||
| Description: The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.) |
| Ref | Expression |
|---|---|
| hash0 | ⊢ (♯‘∅) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ ∅ = ∅ | |
| 2 | 0ex 5245 | . . 3 ⊢ ∅ ∈ V | |
| 3 | hasheq0 14270 | . . 3 ⊢ (∅ ∈ V → ((♯‘∅) = 0 ↔ ∅ = ∅)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((♯‘∅) = 0 ↔ ∅ = ∅) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ (♯‘∅) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 ‘cfv 6481 0cc0 11006 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 |
| This theorem is referenced by: hashrabrsn 14279 hashrabsn01 14280 hashrabsn1 14281 hashge0 14294 elprchashprn2 14303 hash1 14311 hashsn01 14323 hashgt12el 14329 hashgt12el2 14330 hashfzo 14336 hashfzp1 14338 hashxplem 14340 hashmap 14342 hashbc 14360 hashf1lem2 14363 hashf1 14364 hash2pwpr 14383 wrdnfi 14455 lsw0g 14473 ccatlid 14494 ccatrid 14495 rev0 14671 repswsymballbi 14687 fsumconst 15697 incexclem 15743 incexc 15744 fprodconst 15885 sumodd 16299 hashgcdeq 16701 prmreclem4 16831 prmreclem5 16832 0hashbc 16919 ramz2 16936 cshws0 17013 chnub 18528 chnccats1 18531 chnccat 18532 psgnunilem2 19408 psgnunilem4 19410 psgn0fv0 19424 psgnsn 19433 psgnprfval1 19435 efginvrel2 19640 efgredleme 19656 efgcpbllemb 19668 frgpnabllem1 19786 gsumconst 19847 ltbwe 21980 fta1g 26103 fta1 26244 birthdaylem3 26891 ppi1 27102 musum 27129 rpvmasum 27465 umgrislfupgrlem 29101 lfuhgr1v0e 29233 vtxdg0e 29454 vtxdlfgrval 29465 rusgr1vtxlem 29567 wspn0 29903 rusgrnumwwlkl1 29947 rusgr0edg 29952 clwwlknonel 30073 clwwlknon1le1 30079 0ewlk 30092 0wlk 30094 0wlkon 30098 0pth 30103 0clwlk 30108 0crct 30111 0cycl 30112 eupth0 30192 eulerpathpr 30218 wlkl0 30345 f1ocnt 32780 hashxpe 32787 1arithidom 33500 lvecdim0 33617 fldext2chn 33739 esumcst 34074 cntmeas 34237 ballotlemfval0 34507 signsvtn0 34581 signstfvneq0 34583 signstfveq0 34588 signsvf0 34591 lpadright 34695 derangsn 35212 subfacp1lem6 35227 poimirlem25 37691 poimirlem26 37692 poimirlem27 37693 poimirlem28 37694 unitscyglem4 42237 rp-isfinite6 43557 fzisoeu 45347 |
| Copyright terms: Public domain | W3C validator |