Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hash0 | Structured version Visualization version GIF version |
Description: The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.) |
Ref | Expression |
---|---|
hash0 | ⊢ (♯‘∅) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . 2 ⊢ ∅ = ∅ | |
2 | 0ex 5255 | . . 3 ⊢ ∅ ∈ V | |
3 | hasheq0 14182 | . . 3 ⊢ (∅ ∈ V → ((♯‘∅) = 0 ↔ ∅ = ∅)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((♯‘∅) = 0 ↔ ∅ = ∅) |
5 | 1, 4 | mpbir 230 | 1 ⊢ (♯‘∅) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 Vcvv 3442 ∅c0 4273 ‘cfv 6483 0cc0 10976 ♯chash 14149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-n0 12339 df-z 12425 df-uz 12688 df-fz 13345 df-hash 14150 |
This theorem is referenced by: hashrabrsn 14191 hashrabsn01 14192 hashrabsn1 14193 hashge0 14206 elprchashprn2 14215 hash1 14223 hashsn01 14235 hashgt12el 14241 hashgt12el2 14242 hashfzo 14248 hashfzp1 14250 hashxplem 14252 hashmap 14254 hashbc 14269 hashf1lem2 14274 hashf1 14275 hash2pwpr 14294 wrdnfi 14355 lsw0g 14373 ccatlid 14393 ccatrid 14394 rev0 14575 repswsymballbi 14591 fsumconst 15601 incexclem 15647 incexc 15648 fprodconst 15787 sumodd 16196 hashgcdeq 16587 prmreclem4 16717 prmreclem5 16718 0hashbc 16805 ramz2 16822 cshws0 16900 psgnunilem2 19199 psgnunilem4 19201 psgn0fv0 19215 psgnsn 19224 psgnprfval1 19226 efginvrel2 19428 efgredleme 19444 efgcpbllemb 19456 frgpnabllem1 19569 gsumconst 19629 ltbwe 21350 fta1g 25437 fta1 25573 birthdaylem3 26208 ppi1 26418 musum 26445 rpvmasum 26779 umgrislfupgrlem 27780 lfuhgr1v0e 27909 vtxdg0e 28129 vtxdlfgrval 28140 rusgr1vtxlem 28242 wspn0 28576 rusgrnumwwlkl1 28620 rusgr0edg 28625 clwwlknonel 28746 clwwlknon1le1 28752 0ewlk 28765 0wlk 28767 0wlkon 28771 0pth 28776 0clwlk 28781 0crct 28784 0cycl 28785 eupth0 28865 eulerpathpr 28891 wlkl0 29018 f1ocnt 31408 hashxpe 31412 lvecdim0 31986 esumcst 32327 cntmeas 32490 ballotlemfval0 32760 signsvtn0 32847 signstfvneq0 32849 signstfveq0 32854 signsvf0 32857 lpadright 32962 derangsn 33429 subfacp1lem6 33444 poimirlem25 35958 poimirlem26 35959 poimirlem27 35960 poimirlem28 35961 rp-isfinite6 41499 fzisoeu 43226 upwordnul 44797 |
Copyright terms: Public domain | W3C validator |