Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > lnfncnbd | Structured version Visualization version GIF version |
Description: A linear functional is continuous iff it is bounded. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfncnbd | ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn‘𝑇) ∈ ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmcfnex 30394 | . . 3 ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → (normfn‘𝑇) ∈ ℝ) | |
2 | 1 | ex 412 | . 2 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn → (normfn‘𝑇) ∈ ℝ)) |
3 | simpr 484 | . . . . 5 ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) → (normfn‘𝑇) ∈ ℝ) | |
4 | nmbdfnlb 30391 | . . . . . . 7 ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) | |
5 | 4 | 3expa 1116 | . . . . . 6 ⊢ (((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) |
6 | 5 | ralrimiva 3109 | . . . . 5 ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) → ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) |
7 | oveq1 7275 | . . . . . . . 8 ⊢ (𝑥 = (normfn‘𝑇) → (𝑥 · (normℎ‘𝑦)) = ((normfn‘𝑇) · (normℎ‘𝑦))) | |
8 | 7 | breq2d 5090 | . . . . . . 7 ⊢ (𝑥 = (normfn‘𝑇) → ((abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)) ↔ (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦)))) |
9 | 8 | ralbidv 3122 | . . . . . 6 ⊢ (𝑥 = (normfn‘𝑇) → (∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)) ↔ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦)))) |
10 | 9 | rspcev 3560 | . . . . 5 ⊢ (((normfn‘𝑇) ∈ ℝ ∧ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) |
11 | 3, 6, 10 | syl2anc 583 | . . . 4 ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) |
12 | 11 | ex 412 | . . 3 ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) |
13 | lnfncon 30397 | . . 3 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) | |
14 | 12, 13 | sylibrd 258 | . 2 ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ → 𝑇 ∈ ContFn)) |
15 | 2, 14 | impbid 211 | 1 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn‘𝑇) ∈ ℝ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 ℝcr 10854 · cmul 10860 ≤ cle 10994 abscabs 14926 ℋchba 29260 normℎcno 29264 normfncnmf 29292 ContFnccnfn 29294 LinFnclf 29295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-hilex 29340 ax-hfvadd 29341 ax-hv0cl 29344 ax-hvaddid 29345 ax-hfvmul 29346 ax-hvmulid 29347 ax-hvmulass 29348 ax-hvmul0 29351 ax-hfi 29420 ax-his1 29423 ax-his3 29425 ax-his4 29426 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-hnorm 29309 df-hvsub 29312 df-nmfn 30186 df-cnfn 30188 df-lnfn 30189 |
This theorem is referenced by: riesz1 30406 riesz2 30407 rnbra 30448 |
Copyright terms: Public domain | W3C validator |