![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnfncnbd | Structured version Visualization version GIF version |
Description: A linear functional is continuous iff it is bounded. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfncnbd | ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn‘𝑇) ∈ ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmcfnex 31739 | . . 3 ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → (normfn‘𝑇) ∈ ℝ) | |
2 | 1 | ex 412 | . 2 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn → (normfn‘𝑇) ∈ ℝ)) |
3 | simpr 484 | . . . . 5 ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) → (normfn‘𝑇) ∈ ℝ) | |
4 | nmbdfnlb 31736 | . . . . . . 7 ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) | |
5 | 4 | 3expa 1117 | . . . . . 6 ⊢ (((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) |
6 | 5 | ralrimiva 3145 | . . . . 5 ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) → ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) |
7 | oveq1 7419 | . . . . . . . 8 ⊢ (𝑥 = (normfn‘𝑇) → (𝑥 · (normℎ‘𝑦)) = ((normfn‘𝑇) · (normℎ‘𝑦))) | |
8 | 7 | breq2d 5160 | . . . . . . 7 ⊢ (𝑥 = (normfn‘𝑇) → ((abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)) ↔ (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦)))) |
9 | 8 | ralbidv 3176 | . . . . . 6 ⊢ (𝑥 = (normfn‘𝑇) → (∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)) ↔ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦)))) |
10 | 9 | rspcev 3612 | . . . . 5 ⊢ (((normfn‘𝑇) ∈ ℝ ∧ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) |
11 | 3, 6, 10 | syl2anc 583 | . . . 4 ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) |
12 | 11 | ex 412 | . . 3 ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) |
13 | lnfncon 31742 | . . 3 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) | |
14 | 12, 13 | sylibrd 259 | . 2 ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ → 𝑇 ∈ ContFn)) |
15 | 2, 14 | impbid 211 | 1 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn‘𝑇) ∈ ℝ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 ℝcr 11115 · cmul 11121 ≤ cle 11256 abscabs 15188 ℋchba 30605 normℎcno 30609 normfncnmf 30637 ContFnccnfn 30639 LinFnclf 30640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-hilex 30685 ax-hfvadd 30686 ax-hv0cl 30689 ax-hvaddid 30690 ax-hfvmul 30691 ax-hvmulid 30692 ax-hvmulass 30693 ax-hvmul0 30696 ax-hfi 30765 ax-his1 30768 ax-his3 30770 ax-his4 30771 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-hnorm 30654 df-hvsub 30657 df-nmfn 31531 df-cnfn 31533 df-lnfn 31534 |
This theorem is referenced by: riesz1 31751 riesz2 31752 rnbra 31793 |
Copyright terms: Public domain | W3C validator |