HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfncnbd Structured version   Visualization version   GIF version

Theorem lnfncnbd 31992
Description: A linear functional is continuous iff it is bounded. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnfncnbd (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn𝑇) ∈ ℝ))

Proof of Theorem lnfncnbd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmcfnex 31988 . . 3 ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → (normfn𝑇) ∈ ℝ)
21ex 412 . 2 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn → (normfn𝑇) ∈ ℝ))
3 simpr 484 . . . . 5 ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ) → (normfn𝑇) ∈ ℝ)
4 nmbdfnlb 31985 . . . . . . 7 ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇𝑦)) ≤ ((normfn𝑇) · (norm𝑦)))
543expa 1118 . . . . . 6 (((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ) ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇𝑦)) ≤ ((normfn𝑇) · (norm𝑦)))
65ralrimiva 3126 . . . . 5 ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ) → ∀𝑦 ∈ ℋ (abs‘(𝑇𝑦)) ≤ ((normfn𝑇) · (norm𝑦)))
7 oveq1 7396 . . . . . . . 8 (𝑥 = (normfn𝑇) → (𝑥 · (norm𝑦)) = ((normfn𝑇) · (norm𝑦)))
87breq2d 5121 . . . . . . 7 (𝑥 = (normfn𝑇) → ((abs‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ↔ (abs‘(𝑇𝑦)) ≤ ((normfn𝑇) · (norm𝑦))))
98ralbidv 3157 . . . . . 6 (𝑥 = (normfn𝑇) → (∀𝑦 ∈ ℋ (abs‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ↔ ∀𝑦 ∈ ℋ (abs‘(𝑇𝑦)) ≤ ((normfn𝑇) · (norm𝑦))))
109rspcev 3591 . . . . 5 (((normfn𝑇) ∈ ℝ ∧ ∀𝑦 ∈ ℋ (abs‘(𝑇𝑦)) ≤ ((normfn𝑇) · (norm𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
113, 6, 10syl2anc 584 . . . 4 ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
1211ex 412 . . 3 (𝑇 ∈ LinFn → ((normfn𝑇) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))))
13 lnfncon 31991 . . 3 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))))
1412, 13sylibrd 259 . 2 (𝑇 ∈ LinFn → ((normfn𝑇) ∈ ℝ → 𝑇 ∈ ContFn))
152, 14impbid 212 1 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn𝑇) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054   class class class wbr 5109  cfv 6513  (class class class)co 7389  cr 11073   · cmul 11079  cle 11215  abscabs 15206  chba 30854  normcno 30858  normfncnmf 30886  ContFnccnfn 30888  LinFnclf 30889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-hilex 30934  ax-hfvadd 30935  ax-hv0cl 30938  ax-hvaddid 30939  ax-hfvmul 30940  ax-hvmulid 30941  ax-hvmulass 30942  ax-hvmul0 30945  ax-hfi 31014  ax-his1 31017  ax-his3 31019  ax-his4 31020
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-sup 9399  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-seq 13973  df-exp 14033  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-hnorm 30903  df-hvsub 30906  df-nmfn 31780  df-cnfn 31782  df-lnfn 31783
This theorem is referenced by:  riesz1  32000  riesz2  32001  rnbra  32042
  Copyright terms: Public domain W3C validator