![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnfncnbd | Structured version Visualization version GIF version |
Description: A linear functional is continuous iff it is bounded. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfncnbd | ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn‘𝑇) ∈ ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmcfnex 32098 | . . 3 ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → (normfn‘𝑇) ∈ ℝ) | |
2 | 1 | ex 412 | . 2 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn → (normfn‘𝑇) ∈ ℝ)) |
3 | simpr 484 | . . . . 5 ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) → (normfn‘𝑇) ∈ ℝ) | |
4 | nmbdfnlb 32095 | . . . . . . 7 ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) | |
5 | 4 | 3expa 1119 | . . . . . 6 ⊢ (((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) |
6 | 5 | ralrimiva 3146 | . . . . 5 ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) → ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) |
7 | oveq1 7445 | . . . . . . . 8 ⊢ (𝑥 = (normfn‘𝑇) → (𝑥 · (normℎ‘𝑦)) = ((normfn‘𝑇) · (normℎ‘𝑦))) | |
8 | 7 | breq2d 5163 | . . . . . . 7 ⊢ (𝑥 = (normfn‘𝑇) → ((abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)) ↔ (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦)))) |
9 | 8 | ralbidv 3178 | . . . . . 6 ⊢ (𝑥 = (normfn‘𝑇) → (∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)) ↔ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦)))) |
10 | 9 | rspcev 3625 | . . . . 5 ⊢ (((normfn‘𝑇) ∈ ℝ ∧ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) |
11 | 3, 6, 10 | syl2anc 584 | . . . 4 ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) |
12 | 11 | ex 412 | . . 3 ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) |
13 | lnfncon 32101 | . . 3 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) | |
14 | 12, 13 | sylibrd 259 | . 2 ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ → 𝑇 ∈ ContFn)) |
15 | 2, 14 | impbid 212 | 1 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn‘𝑇) ∈ ℝ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 ℝcr 11161 · cmul 11167 ≤ cle 11303 abscabs 15279 ℋchba 30964 normℎcno 30968 normfncnmf 30996 ContFnccnfn 30998 LinFnclf 30999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 ax-hilex 31044 ax-hfvadd 31045 ax-hv0cl 31048 ax-hvaddid 31049 ax-hfvmul 31050 ax-hvmulid 31051 ax-hvmulass 31052 ax-hvmul0 31055 ax-hfi 31124 ax-his1 31127 ax-his3 31129 ax-his4 31130 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-sup 9489 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-z 12621 df-uz 12886 df-rp 13042 df-seq 14049 df-exp 14109 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-hnorm 31013 df-hvsub 31016 df-nmfn 31890 df-cnfn 31892 df-lnfn 31893 |
This theorem is referenced by: riesz1 32110 riesz2 32111 rnbra 32152 |
Copyright terms: Public domain | W3C validator |