| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnfncnbd | Structured version Visualization version GIF version | ||
| Description: A linear functional is continuous iff it is bounded. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnfncnbd | ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn‘𝑇) ∈ ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcfnex 31980 | . . 3 ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → (normfn‘𝑇) ∈ ℝ) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn → (normfn‘𝑇) ∈ ℝ)) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) → (normfn‘𝑇) ∈ ℝ) | |
| 4 | nmbdfnlb 31977 | . . . . . . 7 ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) | |
| 5 | 4 | 3expa 1118 | . . . . . 6 ⊢ (((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) |
| 6 | 5 | ralrimiva 3132 | . . . . 5 ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) → ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) |
| 7 | oveq1 7410 | . . . . . . . 8 ⊢ (𝑥 = (normfn‘𝑇) → (𝑥 · (normℎ‘𝑦)) = ((normfn‘𝑇) · (normℎ‘𝑦))) | |
| 8 | 7 | breq2d 5131 | . . . . . . 7 ⊢ (𝑥 = (normfn‘𝑇) → ((abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)) ↔ (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦)))) |
| 9 | 8 | ralbidv 3163 | . . . . . 6 ⊢ (𝑥 = (normfn‘𝑇) → (∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)) ↔ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦)))) |
| 10 | 9 | rspcev 3601 | . . . . 5 ⊢ (((normfn‘𝑇) ∈ ℝ ∧ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) |
| 11 | 3, 6, 10 | syl2anc 584 | . . . 4 ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) |
| 12 | 11 | ex 412 | . . 3 ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) |
| 13 | lnfncon 31983 | . . 3 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) | |
| 14 | 12, 13 | sylibrd 259 | . 2 ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ → 𝑇 ∈ ContFn)) |
| 15 | 2, 14 | impbid 212 | 1 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn‘𝑇) ∈ ℝ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 ℝcr 11126 · cmul 11132 ≤ cle 11268 abscabs 15251 ℋchba 30846 normℎcno 30850 normfncnmf 30878 ContFnccnfn 30880 LinFnclf 30881 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-hilex 30926 ax-hfvadd 30927 ax-hv0cl 30930 ax-hvaddid 30931 ax-hfvmul 30932 ax-hvmulid 30933 ax-hvmulass 30934 ax-hvmul0 30937 ax-hfi 31006 ax-his1 31009 ax-his3 31011 ax-his4 31012 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-hnorm 30895 df-hvsub 30898 df-nmfn 31772 df-cnfn 31774 df-lnfn 31775 |
| This theorem is referenced by: riesz1 31992 riesz2 31993 rnbra 32034 |
| Copyright terms: Public domain | W3C validator |