MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inagflat Structured version   Visualization version   GIF version

Theorem inagflat 28599
Description: Any point lies in a flat angle. (Contributed by Thierry Arnoux, 13-Feb-2023.)
Hypotheses
Ref Expression
isinag.p 𝑃 = (Baseβ€˜πΊ)
isinag.i 𝐼 = (Itvβ€˜πΊ)
isinag.k 𝐾 = (hlGβ€˜πΊ)
isinag.x (πœ‘ β†’ 𝑋 ∈ 𝑃)
isinag.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
isinag.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
isinag.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
inagflat.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
inagflat.x (πœ‘ β†’ 𝑋 ∈ 𝑃)
inagflat.1 (πœ‘ β†’ 𝐴 β‰  𝐡)
inagflat.2 (πœ‘ β†’ 𝐢 β‰  𝐡)
inagflat.3 (πœ‘ β†’ 𝑋 β‰  𝐡)
inagflat.4 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
Assertion
Ref Expression
inagflat (πœ‘ β†’ 𝑋(inAβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ©)

Proof of Theorem inagflat
StepHypRef Expression
1 isinag.p . 2 𝑃 = (Baseβ€˜πΊ)
2 isinag.i . 2 𝐼 = (Itvβ€˜πΊ)
3 isinag.k . 2 𝐾 = (hlGβ€˜πΊ)
4 isinag.x . 2 (πœ‘ β†’ 𝑋 ∈ 𝑃)
5 isinag.a . 2 (πœ‘ β†’ 𝐴 ∈ 𝑃)
6 isinag.b . 2 (πœ‘ β†’ 𝐡 ∈ 𝑃)
7 isinag.c . 2 (πœ‘ β†’ 𝐢 ∈ 𝑃)
8 inagflat.g . 2 (πœ‘ β†’ 𝐺 ∈ TarskiG)
9 inagflat.1 . 2 (πœ‘ β†’ 𝐴 β‰  𝐡)
10 inagflat.2 . 2 (πœ‘ β†’ 𝐢 β‰  𝐡)
11 inagflat.3 . 2 (πœ‘ β†’ 𝑋 β‰  𝐡)
12 inagflat.4 . 2 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
13 eqidd 2727 . . 3 (πœ‘ β†’ 𝐡 = 𝐡)
1413orcd 870 . 2 (πœ‘ β†’ (𝐡 = 𝐡 ∨ 𝐡(πΎβ€˜π΅)𝑋))
151, 2, 3, 4, 5, 6, 7, 8, 6, 9, 10, 11, 12, 14isinagd 28598 1 (πœ‘ β†’ 𝑋(inAβ€˜πΊ)βŸ¨β€œπ΄π΅πΆβ€βŸ©)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098   β‰  wne 2934   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  βŸ¨β€œcs3 14799  Basecbs 17153  TarskiGcstrkg 28186  Itvcitv 28192  hlGchlg 28359  inAcinag 28594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-fzo 13634  df-hash 14296  df-word 14471  df-concat 14527  df-s1 14552  df-s2 14805  df-s3 14806  df-inag 28596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator