|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > isinagd | Structured version Visualization version GIF version | ||
| Description: Sufficient conditions for in-angle relation, deduction version. (Contributed by Thierry Arnoux, 20-Oct-2020.) | 
| Ref | Expression | 
|---|---|
| isinag.p | ⊢ 𝑃 = (Base‘𝐺) | 
| isinag.i | ⊢ 𝐼 = (Itv‘𝐺) | 
| isinag.k | ⊢ 𝐾 = (hlG‘𝐺) | 
| isinag.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) | 
| isinag.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| isinag.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| isinag.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) | 
| isinagd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) | 
| isinagd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) | 
| isinagd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) | 
| isinagd.2 | ⊢ (𝜑 → 𝐶 ≠ 𝐵) | 
| isinagd.3 | ⊢ (𝜑 → 𝑋 ≠ 𝐵) | 
| isinagd.4 | ⊢ (𝜑 → 𝑌 ∈ (𝐴𝐼𝐶)) | 
| isinagd.5 | ⊢ (𝜑 → (𝑌 = 𝐵 ∨ 𝑌(𝐾‘𝐵)𝑋)) | 
| Ref | Expression | 
|---|---|
| isinagd | ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isinagd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | isinagd.2 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐵) | |
| 3 | isinagd.3 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝐵) | |
| 4 | 1, 2, 3 | 3jca 1128 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵)) | 
| 5 | isinagd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 6 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → 𝑥 = 𝑌) | |
| 7 | eqidd 2737 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝐴𝐼𝐶) = (𝐴𝐼𝐶)) | |
| 8 | 6, 7 | eleq12d 2834 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑥 ∈ (𝐴𝐼𝐶) ↔ 𝑌 ∈ (𝐴𝐼𝐶))) | 
| 9 | eqidd 2737 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → 𝐵 = 𝐵) | |
| 10 | 6, 9 | eqeq12d 2752 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑥 = 𝐵 ↔ 𝑌 = 𝐵)) | 
| 11 | 6 | breq1d 5152 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑥(𝐾‘𝐵)𝑋 ↔ 𝑌(𝐾‘𝐵)𝑋)) | 
| 12 | 10, 11 | orbi12d 918 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → ((𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋) ↔ (𝑌 = 𝐵 ∨ 𝑌(𝐾‘𝐵)𝑋))) | 
| 13 | 8, 12 | anbi12d 632 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → ((𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)) ↔ (𝑌 ∈ (𝐴𝐼𝐶) ∧ (𝑌 = 𝐵 ∨ 𝑌(𝐾‘𝐵)𝑋)))) | 
| 14 | isinagd.4 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝐴𝐼𝐶)) | |
| 15 | isinagd.5 | . . . . 5 ⊢ (𝜑 → (𝑌 = 𝐵 ∨ 𝑌(𝐾‘𝐵)𝑋)) | |
| 16 | 14, 15 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ (𝐴𝐼𝐶) ∧ (𝑌 = 𝐵 ∨ 𝑌(𝐾‘𝐵)𝑋))) | 
| 17 | 5, 13, 16 | rspcedvd 3623 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))) | 
| 18 | 4, 17 | jca 511 | . 2 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))) | 
| 19 | isinag.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 20 | isinag.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 21 | isinag.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
| 22 | isinag.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 23 | isinag.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 24 | isinag.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 25 | isinag.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 26 | isinagd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 27 | 19, 20, 21, 22, 23, 24, 25, 26 | isinag 28847 | . 2 ⊢ (𝜑 → (𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉 ↔ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))))) | 
| 28 | 18, 27 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∃wrex 3069 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 〈“cs3 14882 Basecbs 17248 Itvcitv 28442 hlGchlg 28609 inAcinag 28844 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-hash 14371 df-word 14554 df-concat 14610 df-s1 14635 df-s2 14888 df-s3 14889 df-inag 28846 | 
| This theorem is referenced by: inagflat 28849 | 
| Copyright terms: Public domain | W3C validator |