MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0p1gt0 Structured version   Visualization version   GIF version

Theorem nn0p1gt0 12557
Description: A nonnegative integer increased by 1 is greater than 0. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
Assertion
Ref Expression
nn0p1gt0 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))

Proof of Theorem nn0p1gt0
StepHypRef Expression
1 nn0re 12537 . 2 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2 1red 11263 . 2 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
3 nn0ge0 12553 . 2 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
4 0lt1 11786 . . 3 0 < 1
54a1i 11 . 2 (𝑁 ∈ ℕ0 → 0 < 1)
61, 2, 3, 5addgegt0d 11837 1 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   class class class wbr 5142  (class class class)co 7432  0cc0 11156  1c1 11157   + caddc 11159   < clt 11296  0cn0 12528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529
This theorem is referenced by:  ubmelm1fzo  13803  fi1uzind  14547  brfi1indALT  14550  ccatws1n0  14671  ccats1pfxeq  14753  chfacffsupp  22863  chfacfscmul0  22865  chfacfscmulgsum  22867  chfacfpmmul0  22869  chfacfpmmulgsum  22871  iswwlksnx  29861  wspn0  29945  rusgrnumwwlks  29995  wwlksext2clwwlk  30077  numclwwlk2lem1lem  30362  cycpmco2lem4  33150  cycpmco2lem5  33151  lighneallem4a  47600  blennngt2o2  48518  itcovalsuc  48593  ackvalsuc1mpt  48604
  Copyright terms: Public domain W3C validator