| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0p1gt0 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer increased by 1 is greater than 0. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
| Ref | Expression |
|---|---|
| nn0p1gt0 | ⊢ (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 12430 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 2 | 1red 11154 | . 2 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
| 3 | nn0ge0 12446 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 4 | 0lt1 11679 | . . 3 ⊢ 0 < 1 | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 < 1) |
| 6 | 1, 2, 3, 5 | addgegt0d 11730 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7370 0cc0 11047 1c1 11048 + caddc 11050 < clt 11187 ℕ0cn0 12421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-er 8649 df-en 8897 df-dom 8898 df-sdom 8899 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-n0 12422 |
| This theorem is referenced by: ubmelm1fzo 13703 fi1uzind 14451 brfi1indALT 14454 ccatws1n0 14576 ccats1pfxeq 14657 chfacffsupp 22778 chfacfscmul0 22780 chfacfscmulgsum 22782 chfacfpmmul0 22784 chfacfpmmulgsum 22786 iswwlksnx 29822 wspn0 29906 rusgrnumwwlks 29956 wwlksext2clwwlk 30038 numclwwlk2lem1lem 30323 cycpmco2lem4 33103 cycpmco2lem5 33104 lighneallem4a 47604 blennngt2o2 48576 itcovalsuc 48651 ackvalsuc1mpt 48662 |
| Copyright terms: Public domain | W3C validator |