| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0p1gt0 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer increased by 1 is greater than 0. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
| Ref | Expression |
|---|---|
| nn0p1gt0 | ⊢ (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 12429 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 2 | 1red 11153 | . 2 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
| 3 | nn0ge0 12445 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 4 | 0lt1 11678 | . . 3 ⊢ 0 < 1 | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 < 1) |
| 6 | 1, 2, 3, 5 | addgegt0d 11729 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 0cc0 11046 1c1 11047 + caddc 11049 < clt 11186 ℕ0cn0 12420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-n0 12421 |
| This theorem is referenced by: ubmelm1fzo 13702 fi1uzind 14450 brfi1indALT 14453 ccatws1n0 14575 ccats1pfxeq 14656 chfacffsupp 22777 chfacfscmul0 22779 chfacfscmulgsum 22781 chfacfpmmul0 22783 chfacfpmmulgsum 22785 iswwlksnx 29821 wspn0 29905 rusgrnumwwlks 29955 wwlksext2clwwlk 30037 numclwwlk2lem1lem 30322 cycpmco2lem4 33102 cycpmco2lem5 33103 lighneallem4a 47603 blennngt2o2 48575 itcovalsuc 48650 ackvalsuc1mpt 48661 |
| Copyright terms: Public domain | W3C validator |