Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalt2lem2lem2 Structured version   Visualization version   GIF version

Theorem itcovalt2lem2lem2 45086
Description: Lemma 2 for itcovalt2lem2 45088. (Contributed by AV, 7-May-2024.)
Assertion
Ref Expression
itcovalt2lem2lem2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) + 𝐶) = (((𝑁 + 𝐶) · (2↑(𝑌 + 1))) − 𝐶))

Proof of Theorem itcovalt2lem2lem2
StepHypRef Expression
1 2cnd 11703 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℂ)
2 simpr 488 . . . . . . 7 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3 simpr 488 . . . . . . . 8 ((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 ∈ ℕ0)
43adantr 484 . . . . . . 7 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℕ0)
52, 4nn0addcld 11947 . . . . . 6 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ∈ ℕ0)
65nn0cnd 11945 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ∈ ℂ)
7 2nn0 11902 . . . . . . . . 9 2 ∈ ℕ0
87a1i 11 . . . . . . . 8 (𝑌 ∈ ℕ0 → 2 ∈ ℕ0)
9 id 22 . . . . . . . 8 (𝑌 ∈ ℕ0𝑌 ∈ ℕ0)
108, 9nn0expcld 13603 . . . . . . 7 (𝑌 ∈ ℕ0 → (2↑𝑌) ∈ ℕ0)
1110nn0cnd 11945 . . . . . 6 (𝑌 ∈ ℕ0 → (2↑𝑌) ∈ ℂ)
1211ad2antrr 725 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2↑𝑌) ∈ ℂ)
136, 12mulcld 10650 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · (2↑𝑌)) ∈ ℂ)
14 nn0cn 11895 . . . . 5 (𝐶 ∈ ℕ0𝐶 ∈ ℂ)
1514ad2antlr 726 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℂ)
161, 13, 15subdid 11085 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) = ((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − (2 · 𝐶)))
1716oveq1d 7150 . 2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) + 𝐶) = (((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − (2 · 𝐶)) + 𝐶))
187a1i 11 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℕ0)
1910ad2antrr 725 . . . . . 6 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2↑𝑌) ∈ ℕ0)
205, 19nn0mulcld 11948 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · (2↑𝑌)) ∈ ℕ0)
2118, 20nn0mulcld 11948 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) ∈ ℕ0)
2221nn0cnd 11945 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) ∈ ℂ)
237a1i 11 . . . . . 6 ((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) → 2 ∈ ℕ0)
2423, 3nn0mulcld 11948 . . . . 5 ((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) → (2 · 𝐶) ∈ ℕ0)
2524adantr 484 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · 𝐶) ∈ ℕ0)
2625nn0cnd 11945 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · 𝐶) ∈ ℂ)
274nn0cnd 11945 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℂ)
2822, 26, 27subsubd 11014 . 2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − ((2 · 𝐶) − 𝐶)) = (((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − (2 · 𝐶)) + 𝐶))
291, 6, 12mul12d 10838 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) = ((𝑁 + 𝐶) · (2 · (2↑𝑌))))
30 2cnd 11703 . . . . . . . 8 (𝑌 ∈ ℕ0 → 2 ∈ ℂ)
3130, 11mulcomd 10651 . . . . . . 7 (𝑌 ∈ ℕ0 → (2 · (2↑𝑌)) = ((2↑𝑌) · 2))
3230, 9expp1d 13507 . . . . . . 7 (𝑌 ∈ ℕ0 → (2↑(𝑌 + 1)) = ((2↑𝑌) · 2))
3331, 32eqtr4d 2836 . . . . . 6 (𝑌 ∈ ℕ0 → (2 · (2↑𝑌)) = (2↑(𝑌 + 1)))
3433ad2antrr 725 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑌)) = (2↑(𝑌 + 1)))
3534oveq2d 7151 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · (2 · (2↑𝑌))) = ((𝑁 + 𝐶) · (2↑(𝑌 + 1))))
3629, 35eqtrd 2833 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) = ((𝑁 + 𝐶) · (2↑(𝑌 + 1))))
37 2txmxeqx 11765 . . . . 5 (𝐶 ∈ ℂ → ((2 · 𝐶) − 𝐶) = 𝐶)
3814, 37syl 17 . . . 4 (𝐶 ∈ ℕ0 → ((2 · 𝐶) − 𝐶) = 𝐶)
3938ad2antlr 726 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · 𝐶) − 𝐶) = 𝐶)
4036, 39oveq12d 7153 . 2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − ((2 · 𝐶) − 𝐶)) = (((𝑁 + 𝐶) · (2↑(𝑌 + 1))) − 𝐶))
4117, 28, 403eqtr2d 2839 1 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) + 𝐶) = (((𝑁 + 𝐶) · (2↑(𝑌 + 1))) − 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  (class class class)co 7135  cc 10524  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  2c2 11680  0cn0 11885  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-exp 13426
This theorem is referenced by:  itcovalt2lem2  45088
  Copyright terms: Public domain W3C validator