Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalt2lem2lem2 Structured version   Visualization version   GIF version

Theorem itcovalt2lem2lem2 46279
Description: Lemma 2 for itcovalt2lem2 46281. (Contributed by AV, 7-May-2024.)
Assertion
Ref Expression
itcovalt2lem2lem2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) + 𝐶) = (((𝑁 + 𝐶) · (2↑(𝑌 + 1))) − 𝐶))

Proof of Theorem itcovalt2lem2lem2
StepHypRef Expression
1 2cnd 12121 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℂ)
2 simpr 485 . . . . . . 7 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3 simpr 485 . . . . . . . 8 ((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 ∈ ℕ0)
43adantr 481 . . . . . . 7 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℕ0)
52, 4nn0addcld 12367 . . . . . 6 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ∈ ℕ0)
65nn0cnd 12365 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ∈ ℂ)
7 2nn0 12320 . . . . . . . . 9 2 ∈ ℕ0
87a1i 11 . . . . . . . 8 (𝑌 ∈ ℕ0 → 2 ∈ ℕ0)
9 id 22 . . . . . . . 8 (𝑌 ∈ ℕ0𝑌 ∈ ℕ0)
108, 9nn0expcld 14031 . . . . . . 7 (𝑌 ∈ ℕ0 → (2↑𝑌) ∈ ℕ0)
1110nn0cnd 12365 . . . . . 6 (𝑌 ∈ ℕ0 → (2↑𝑌) ∈ ℂ)
1211ad2antrr 723 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2↑𝑌) ∈ ℂ)
136, 12mulcld 11065 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · (2↑𝑌)) ∈ ℂ)
14 nn0cn 12313 . . . . 5 (𝐶 ∈ ℕ0𝐶 ∈ ℂ)
1514ad2antlr 724 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℂ)
161, 13, 15subdid 11501 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) = ((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − (2 · 𝐶)))
1716oveq1d 7328 . 2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) + 𝐶) = (((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − (2 · 𝐶)) + 𝐶))
187a1i 11 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℕ0)
1910ad2antrr 723 . . . . . 6 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2↑𝑌) ∈ ℕ0)
205, 19nn0mulcld 12368 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · (2↑𝑌)) ∈ ℕ0)
2118, 20nn0mulcld 12368 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) ∈ ℕ0)
2221nn0cnd 12365 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) ∈ ℂ)
237a1i 11 . . . . . 6 ((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) → 2 ∈ ℕ0)
2423, 3nn0mulcld 12368 . . . . 5 ((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) → (2 · 𝐶) ∈ ℕ0)
2524adantr 481 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · 𝐶) ∈ ℕ0)
2625nn0cnd 12365 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · 𝐶) ∈ ℂ)
274nn0cnd 12365 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℂ)
2822, 26, 27subsubd 11430 . 2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − ((2 · 𝐶) − 𝐶)) = (((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − (2 · 𝐶)) + 𝐶))
291, 6, 12mul12d 11254 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) = ((𝑁 + 𝐶) · (2 · (2↑𝑌))))
30 2cnd 12121 . . . . . . . 8 (𝑌 ∈ ℕ0 → 2 ∈ ℂ)
3130, 11mulcomd 11066 . . . . . . 7 (𝑌 ∈ ℕ0 → (2 · (2↑𝑌)) = ((2↑𝑌) · 2))
3230, 9expp1d 13935 . . . . . . 7 (𝑌 ∈ ℕ0 → (2↑(𝑌 + 1)) = ((2↑𝑌) · 2))
3331, 32eqtr4d 2780 . . . . . 6 (𝑌 ∈ ℕ0 → (2 · (2↑𝑌)) = (2↑(𝑌 + 1)))
3433ad2antrr 723 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑌)) = (2↑(𝑌 + 1)))
3534oveq2d 7329 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · (2 · (2↑𝑌))) = ((𝑁 + 𝐶) · (2↑(𝑌 + 1))))
3629, 35eqtrd 2777 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) = ((𝑁 + 𝐶) · (2↑(𝑌 + 1))))
37 2txmxeqx 12183 . . . . 5 (𝐶 ∈ ℂ → ((2 · 𝐶) − 𝐶) = 𝐶)
3814, 37syl 17 . . . 4 (𝐶 ∈ ℕ0 → ((2 · 𝐶) − 𝐶) = 𝐶)
3938ad2antlr 724 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · 𝐶) − 𝐶) = 𝐶)
4036, 39oveq12d 7331 . 2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − ((2 · 𝐶) − 𝐶)) = (((𝑁 + 𝐶) · (2↑(𝑌 + 1))) − 𝐶))
4117, 28, 403eqtr2d 2783 1 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) + 𝐶) = (((𝑁 + 𝐶) · (2↑(𝑌 + 1))) − 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  (class class class)co 7313  cc 10939  1c1 10942   + caddc 10944   · cmul 10946  cmin 11275  2c2 12098  0cn0 12303  cexp 13852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-nn 12044  df-2 12106  df-n0 12304  df-z 12390  df-uz 12653  df-seq 13792  df-exp 13853
This theorem is referenced by:  itcovalt2lem2  46281
  Copyright terms: Public domain W3C validator