Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalt2lem2lem2 Structured version   Visualization version   GIF version

Theorem itcovalt2lem2lem2 45647
Description: Lemma 2 for itcovalt2lem2 45649. (Contributed by AV, 7-May-2024.)
Assertion
Ref Expression
itcovalt2lem2lem2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) + 𝐶) = (((𝑁 + 𝐶) · (2↑(𝑌 + 1))) − 𝐶))

Proof of Theorem itcovalt2lem2lem2
StepHypRef Expression
1 2cnd 11891 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℂ)
2 simpr 488 . . . . . . 7 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3 simpr 488 . . . . . . . 8 ((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 ∈ ℕ0)
43adantr 484 . . . . . . 7 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℕ0)
52, 4nn0addcld 12137 . . . . . 6 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ∈ ℕ0)
65nn0cnd 12135 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ∈ ℂ)
7 2nn0 12090 . . . . . . . . 9 2 ∈ ℕ0
87a1i 11 . . . . . . . 8 (𝑌 ∈ ℕ0 → 2 ∈ ℕ0)
9 id 22 . . . . . . . 8 (𝑌 ∈ ℕ0𝑌 ∈ ℕ0)
108, 9nn0expcld 13796 . . . . . . 7 (𝑌 ∈ ℕ0 → (2↑𝑌) ∈ ℕ0)
1110nn0cnd 12135 . . . . . 6 (𝑌 ∈ ℕ0 → (2↑𝑌) ∈ ℂ)
1211ad2antrr 726 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2↑𝑌) ∈ ℂ)
136, 12mulcld 10836 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · (2↑𝑌)) ∈ ℂ)
14 nn0cn 12083 . . . . 5 (𝐶 ∈ ℕ0𝐶 ∈ ℂ)
1514ad2antlr 727 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℂ)
161, 13, 15subdid 11271 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) = ((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − (2 · 𝐶)))
1716oveq1d 7217 . 2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) + 𝐶) = (((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − (2 · 𝐶)) + 𝐶))
187a1i 11 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℕ0)
1910ad2antrr 726 . . . . . 6 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2↑𝑌) ∈ ℕ0)
205, 19nn0mulcld 12138 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · (2↑𝑌)) ∈ ℕ0)
2118, 20nn0mulcld 12138 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) ∈ ℕ0)
2221nn0cnd 12135 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) ∈ ℂ)
237a1i 11 . . . . . 6 ((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) → 2 ∈ ℕ0)
2423, 3nn0mulcld 12138 . . . . 5 ((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) → (2 · 𝐶) ∈ ℕ0)
2524adantr 484 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · 𝐶) ∈ ℕ0)
2625nn0cnd 12135 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · 𝐶) ∈ ℂ)
274nn0cnd 12135 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℂ)
2822, 26, 27subsubd 11200 . 2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − ((2 · 𝐶) − 𝐶)) = (((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − (2 · 𝐶)) + 𝐶))
291, 6, 12mul12d 11024 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) = ((𝑁 + 𝐶) · (2 · (2↑𝑌))))
30 2cnd 11891 . . . . . . . 8 (𝑌 ∈ ℕ0 → 2 ∈ ℂ)
3130, 11mulcomd 10837 . . . . . . 7 (𝑌 ∈ ℕ0 → (2 · (2↑𝑌)) = ((2↑𝑌) · 2))
3230, 9expp1d 13700 . . . . . . 7 (𝑌 ∈ ℕ0 → (2↑(𝑌 + 1)) = ((2↑𝑌) · 2))
3331, 32eqtr4d 2777 . . . . . 6 (𝑌 ∈ ℕ0 → (2 · (2↑𝑌)) = (2↑(𝑌 + 1)))
3433ad2antrr 726 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑌)) = (2↑(𝑌 + 1)))
3534oveq2d 7218 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · (2 · (2↑𝑌))) = ((𝑁 + 𝐶) · (2↑(𝑌 + 1))))
3629, 35eqtrd 2774 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) = ((𝑁 + 𝐶) · (2↑(𝑌 + 1))))
37 2txmxeqx 11953 . . . . 5 (𝐶 ∈ ℂ → ((2 · 𝐶) − 𝐶) = 𝐶)
3814, 37syl 17 . . . 4 (𝐶 ∈ ℕ0 → ((2 · 𝐶) − 𝐶) = 𝐶)
3938ad2antlr 727 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · 𝐶) − 𝐶) = 𝐶)
4036, 39oveq12d 7220 . 2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − ((2 · 𝐶) − 𝐶)) = (((𝑁 + 𝐶) · (2↑(𝑌 + 1))) − 𝐶))
4117, 28, 403eqtr2d 2780 1 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) + 𝐶) = (((𝑁 + 𝐶) · (2↑(𝑌 + 1))) − 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  (class class class)co 7202  cc 10710  1c1 10713   + caddc 10715   · cmul 10717  cmin 11045  2c2 11868  0cn0 12073  cexp 13618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-n0 12074  df-z 12160  df-uz 12422  df-seq 13558  df-exp 13619
This theorem is referenced by:  itcovalt2lem2  45649
  Copyright terms: Public domain W3C validator