Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalt2lem2lem2 Structured version   Visualization version   GIF version

Theorem itcovalt2lem2lem2 48836
Description: Lemma 2 for itcovalt2lem2 48838. (Contributed by AV, 7-May-2024.)
Assertion
Ref Expression
itcovalt2lem2lem2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) + 𝐶) = (((𝑁 + 𝐶) · (2↑(𝑌 + 1))) − 𝐶))

Proof of Theorem itcovalt2lem2lem2
StepHypRef Expression
1 2cnd 12214 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℂ)
2 simpr 484 . . . . . . 7 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3 simpr 484 . . . . . . . 8 ((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 ∈ ℕ0)
43adantr 480 . . . . . . 7 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℕ0)
52, 4nn0addcld 12457 . . . . . 6 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ∈ ℕ0)
65nn0cnd 12455 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ∈ ℂ)
7 2nn0 12409 . . . . . . . . 9 2 ∈ ℕ0
87a1i 11 . . . . . . . 8 (𝑌 ∈ ℕ0 → 2 ∈ ℕ0)
9 id 22 . . . . . . . 8 (𝑌 ∈ ℕ0𝑌 ∈ ℕ0)
108, 9nn0expcld 14160 . . . . . . 7 (𝑌 ∈ ℕ0 → (2↑𝑌) ∈ ℕ0)
1110nn0cnd 12455 . . . . . 6 (𝑌 ∈ ℕ0 → (2↑𝑌) ∈ ℂ)
1211ad2antrr 726 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2↑𝑌) ∈ ℂ)
136, 12mulcld 11143 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · (2↑𝑌)) ∈ ℂ)
14 nn0cn 12402 . . . . 5 (𝐶 ∈ ℕ0𝐶 ∈ ℂ)
1514ad2antlr 727 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℂ)
161, 13, 15subdid 11584 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) = ((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − (2 · 𝐶)))
1716oveq1d 7370 . 2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) + 𝐶) = (((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − (2 · 𝐶)) + 𝐶))
187a1i 11 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℕ0)
1910ad2antrr 726 . . . . . 6 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2↑𝑌) ∈ ℕ0)
205, 19nn0mulcld 12458 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · (2↑𝑌)) ∈ ℕ0)
2118, 20nn0mulcld 12458 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) ∈ ℕ0)
2221nn0cnd 12455 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) ∈ ℂ)
237a1i 11 . . . . . 6 ((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) → 2 ∈ ℕ0)
2423, 3nn0mulcld 12458 . . . . 5 ((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) → (2 · 𝐶) ∈ ℕ0)
2524adantr 480 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · 𝐶) ∈ ℕ0)
2625nn0cnd 12455 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · 𝐶) ∈ ℂ)
274nn0cnd 12455 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℂ)
2822, 26, 27subsubd 11511 . 2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − ((2 · 𝐶) − 𝐶)) = (((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − (2 · 𝐶)) + 𝐶))
291, 6, 12mul12d 11333 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) = ((𝑁 + 𝐶) · (2 · (2↑𝑌))))
30 2cnd 12214 . . . . . . . 8 (𝑌 ∈ ℕ0 → 2 ∈ ℂ)
3130, 11mulcomd 11144 . . . . . . 7 (𝑌 ∈ ℕ0 → (2 · (2↑𝑌)) = ((2↑𝑌) · 2))
3230, 9expp1d 14061 . . . . . . 7 (𝑌 ∈ ℕ0 → (2↑(𝑌 + 1)) = ((2↑𝑌) · 2))
3331, 32eqtr4d 2771 . . . . . 6 (𝑌 ∈ ℕ0 → (2 · (2↑𝑌)) = (2↑(𝑌 + 1)))
3433ad2antrr 726 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑌)) = (2↑(𝑌 + 1)))
3534oveq2d 7371 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · (2 · (2↑𝑌))) = ((𝑁 + 𝐶) · (2↑(𝑌 + 1))))
3629, 35eqtrd 2768 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) = ((𝑁 + 𝐶) · (2↑(𝑌 + 1))))
37 2txmxeqx 12271 . . . . 5 (𝐶 ∈ ℂ → ((2 · 𝐶) − 𝐶) = 𝐶)
3814, 37syl 17 . . . 4 (𝐶 ∈ ℕ0 → ((2 · 𝐶) − 𝐶) = 𝐶)
3938ad2antlr 727 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · 𝐶) − 𝐶) = 𝐶)
4036, 39oveq12d 7373 . 2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − ((2 · 𝐶) − 𝐶)) = (((𝑁 + 𝐶) · (2↑(𝑌 + 1))) − 𝐶))
4117, 28, 403eqtr2d 2774 1 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) + 𝐶) = (((𝑁 + 𝐶) · (2↑(𝑌 + 1))) − 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  (class class class)co 7355  cc 11015  1c1 11018   + caddc 11020   · cmul 11022  cmin 11355  2c2 12191  0cn0 12392  cexp 13975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-seq 13916  df-exp 13976
This theorem is referenced by:  itcovalt2lem2  48838
  Copyright terms: Public domain W3C validator