Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalt2lem2lem2 Structured version   Visualization version   GIF version

Theorem itcovalt2lem2lem2 48712
Description: Lemma 2 for itcovalt2lem2 48714. (Contributed by AV, 7-May-2024.)
Assertion
Ref Expression
itcovalt2lem2lem2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) + 𝐶) = (((𝑁 + 𝐶) · (2↑(𝑌 + 1))) − 𝐶))

Proof of Theorem itcovalt2lem2lem2
StepHypRef Expression
1 2cnd 12203 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℂ)
2 simpr 484 . . . . . . 7 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3 simpr 484 . . . . . . . 8 ((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 ∈ ℕ0)
43adantr 480 . . . . . . 7 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℕ0)
52, 4nn0addcld 12446 . . . . . 6 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ∈ ℕ0)
65nn0cnd 12444 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 𝐶) ∈ ℂ)
7 2nn0 12398 . . . . . . . . 9 2 ∈ ℕ0
87a1i 11 . . . . . . . 8 (𝑌 ∈ ℕ0 → 2 ∈ ℕ0)
9 id 22 . . . . . . . 8 (𝑌 ∈ ℕ0𝑌 ∈ ℕ0)
108, 9nn0expcld 14153 . . . . . . 7 (𝑌 ∈ ℕ0 → (2↑𝑌) ∈ ℕ0)
1110nn0cnd 12444 . . . . . 6 (𝑌 ∈ ℕ0 → (2↑𝑌) ∈ ℂ)
1211ad2antrr 726 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2↑𝑌) ∈ ℂ)
136, 12mulcld 11132 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · (2↑𝑌)) ∈ ℂ)
14 nn0cn 12391 . . . . 5 (𝐶 ∈ ℕ0𝐶 ∈ ℂ)
1514ad2antlr 727 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℂ)
161, 13, 15subdid 11573 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) = ((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − (2 · 𝐶)))
1716oveq1d 7361 . 2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) + 𝐶) = (((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − (2 · 𝐶)) + 𝐶))
187a1i 11 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℕ0)
1910ad2antrr 726 . . . . . 6 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2↑𝑌) ∈ ℕ0)
205, 19nn0mulcld 12447 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · (2↑𝑌)) ∈ ℕ0)
2118, 20nn0mulcld 12447 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) ∈ ℕ0)
2221nn0cnd 12444 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) ∈ ℂ)
237a1i 11 . . . . . 6 ((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) → 2 ∈ ℕ0)
2423, 3nn0mulcld 12447 . . . . 5 ((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) → (2 · 𝐶) ∈ ℕ0)
2524adantr 480 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · 𝐶) ∈ ℕ0)
2625nn0cnd 12444 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · 𝐶) ∈ ℂ)
274nn0cnd 12444 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → 𝐶 ∈ ℂ)
2822, 26, 27subsubd 11500 . 2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − ((2 · 𝐶) − 𝐶)) = (((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − (2 · 𝐶)) + 𝐶))
291, 6, 12mul12d 11322 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) = ((𝑁 + 𝐶) · (2 · (2↑𝑌))))
30 2cnd 12203 . . . . . . . 8 (𝑌 ∈ ℕ0 → 2 ∈ ℂ)
3130, 11mulcomd 11133 . . . . . . 7 (𝑌 ∈ ℕ0 → (2 · (2↑𝑌)) = ((2↑𝑌) · 2))
3230, 9expp1d 14054 . . . . . . 7 (𝑌 ∈ ℕ0 → (2↑(𝑌 + 1)) = ((2↑𝑌) · 2))
3331, 32eqtr4d 2769 . . . . . 6 (𝑌 ∈ ℕ0 → (2 · (2↑𝑌)) = (2↑(𝑌 + 1)))
3433ad2antrr 726 . . . . 5 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑌)) = (2↑(𝑌 + 1)))
3534oveq2d 7362 . . . 4 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 𝐶) · (2 · (2↑𝑌))) = ((𝑁 + 𝐶) · (2↑(𝑌 + 1))))
3629, 35eqtrd 2766 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (2 · ((𝑁 + 𝐶) · (2↑𝑌))) = ((𝑁 + 𝐶) · (2↑(𝑌 + 1))))
37 2txmxeqx 12260 . . . . 5 (𝐶 ∈ ℂ → ((2 · 𝐶) − 𝐶) = 𝐶)
3814, 37syl 17 . . . 4 (𝐶 ∈ ℕ0 → ((2 · 𝐶) − 𝐶) = 𝐶)
3938ad2antlr 727 . . 3 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · 𝐶) − 𝐶) = 𝐶)
4036, 39oveq12d 7364 . 2 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · ((𝑁 + 𝐶) · (2↑𝑌))) − ((2 · 𝐶) − 𝐶)) = (((𝑁 + 𝐶) · (2↑(𝑌 + 1))) − 𝐶))
4117, 28, 403eqtr2d 2772 1 (((𝑌 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) + 𝐶) = (((𝑁 + 𝐶) · (2↑(𝑌 + 1))) − 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11004  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344  2c2 12180  0cn0 12381  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-seq 13909  df-exp 13969
This theorem is referenced by:  itcovalt2lem2  48714
  Copyright terms: Public domain W3C validator