MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringridm Structured version   Visualization version   GIF version

Theorem ringridm 20293
Description: The unity element of a ring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011.)
Hypotheses
Ref Expression
ringidm.b 𝐵 = (Base‘𝑅)
ringidm.t · = (.r𝑅)
ringidm.u 1 = (1r𝑅)
Assertion
Ref Expression
ringridm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)

Proof of Theorem ringridm
StepHypRef Expression
1 ringidm.b . . 3 𝐵 = (Base‘𝑅)
2 ringidm.t . . 3 · = (.r𝑅)
3 ringidm.u . . 3 1 = (1r𝑅)
41, 2, 3ringidmlem 20291 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋))
54simprd 495 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  1rcur 20208  Ringcrg 20260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mgp 20162  df-ur 20209  df-ring 20262
This theorem is referenced by:  ringridmd  20296  ringidss  20300  ringinvnz1ne0  20323  ringnegr  20326  imasring  20353  xpsring1d  20356  opprring  20373  unitmulcl  20406  unitgrp  20409  dvr1  20433  dvrcan1  20435  dvrcan3  20436  subrginv  20616  issubrg2  20620  lidl1el  21259  freshmansdream  21616  uvcresum  21836  frlmssuvc2  21838  asclmul2  21930  psrridm  22006  mplcoe1  22078  mplmon2  22108  evlslem1  22129  mamurid  22469  matsc  22477  scmatscmide  22534  mat1scmat  22566  mulmarep1el  22599  mdet0pr  22619  mdetunilem9  22647  mdetuni0  22648  maducoeval2  22667  madugsum  22670  smadiadetglem2  22699  cramerimplem1  22710  chpmat1dlem  22862  chpdmatlem3  22867  nrginvrcnlem  24733  lgseisenlem4  27440  ress1r  33214  lfl1sc  39040  eqlkr  39055  eqlkr3  39057  lkrlsp  39058  lcfl7lem  41456  lclkrlem2m  41476  hdmapinvlem3  41877  hdmapglem5  41879  hgmapvvlem1  41880  hdmapglem7b  41885  mgpsumn  48088
  Copyright terms: Public domain W3C validator