MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringridm Structured version   Visualization version   GIF version

Theorem ringridm 20155
Description: The unity element of a ring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011.)
Hypotheses
Ref Expression
ringidm.b 𝐵 = (Base‘𝑅)
ringidm.t · = (.r𝑅)
ringidm.u 1 = (1r𝑅)
Assertion
Ref Expression
ringridm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)

Proof of Theorem ringridm
StepHypRef Expression
1 ringidm.b . . 3 𝐵 = (Base‘𝑅)
2 ringidm.t . . 3 · = (.r𝑅)
3 ringidm.u . . 3 1 = (1r𝑅)
41, 2, 3ringidmlem 20153 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋))
54simprd 495 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  Basecbs 17120  .rcmulr 17162  1rcur 20066  Ringcrg 20118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mgp 20026  df-ur 20067  df-ring 20120
This theorem is referenced by:  ringridmd  20158  ringidss  20162  ringinvnz1ne0  20185  ringnegr  20188  imasring  20215  xpsring1d  20218  opprring  20232  unitmulcl  20265  unitgrp  20268  dvr1  20292  dvrcan1  20294  dvrcan3  20295  subrginv  20473  issubrg2  20477  lidl1el  21133  freshmansdream  21481  uvcresum  21700  frlmssuvc2  21702  asclmul2  21794  psrridm  21870  mplcoe1  21942  mplmon2  21966  evlslem1  21987  mamurid  22327  matsc  22335  scmatscmide  22392  mat1scmat  22424  mulmarep1el  22457  mdet0pr  22477  mdetunilem9  22505  mdetuni0  22506  maducoeval2  22525  madugsum  22528  smadiadetglem2  22557  cramerimplem1  22568  chpmat1dlem  22720  chpdmatlem3  22725  nrginvrcnlem  24577  lgseisenlem4  27287  ress1r  33174  lfl1sc  39067  eqlkr  39082  eqlkr3  39084  lkrlsp  39085  lcfl7lem  41482  lclkrlem2m  41502  hdmapinvlem3  41903  hdmapglem5  41905  hgmapvvlem1  41906  hdmapglem7b  41911  mgpsumn  48351
  Copyright terms: Public domain W3C validator