Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringridm | Structured version Visualization version GIF version |
Description: The unit element of a ring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
rngidm.b | ⊢ 𝐵 = (Base‘𝑅) |
rngidm.t | ⊢ · = (.r‘𝑅) |
rngidm.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringridm | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 1 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngidm.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | rngidm.t | . . 3 ⊢ · = (.r‘𝑅) | |
3 | rngidm.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
4 | 1, 2, 3 | ringidmlem 19809 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) |
5 | 4 | simprd 496 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 1 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 .rcmulr 16963 1rcur 19737 Ringcrg 19783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mgp 19721 df-ur 19738 df-ring 19785 |
This theorem is referenced by: ringidss 19816 ringinvnz1ne0 19831 rngnegr 19834 imasring 19858 opprring 19873 unitmulcl 19906 unitgrp 19909 dvr1 19931 dvrcan1 19933 dvrcan3 19934 subrginv 20040 issubrg2 20044 lidl1el 20489 uvcresum 21000 frlmssuvc2 21002 asclmul2 21091 psrridm 21173 mplcoe1 21238 mplmon2 21269 evlslem1 21292 mamurid 21591 matsc 21599 scmatscmide 21656 mat1scmat 21688 mulmarep1el 21721 mdet0pr 21741 mdetunilem9 21769 mdetuni0 21770 maducoeval2 21789 madugsum 21792 smadiadetglem2 21821 cramerimplem1 21832 chpmat1dlem 21984 chpdmatlem3 21989 nrginvrcnlem 23855 lgseisenlem4 26526 freshmansdream 31484 ress1r 31486 lfl1sc 37098 eqlkr 37113 eqlkr3 37115 lkrlsp 37116 lcfl7lem 39513 lclkrlem2m 39533 hdmapinvlem3 39934 hdmapglem5 39936 hgmapvvlem1 39937 hdmapglem7b 39942 ringridmd 40243 0prjspnrel 40464 mgpsumn 45699 |
Copyright terms: Public domain | W3C validator |