MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringridm Structured version   Visualization version   GIF version

Theorem ringridm 19821
Description: The unit element of a ring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011.)
Hypotheses
Ref Expression
rngidm.b 𝐵 = (Base‘𝑅)
rngidm.t · = (.r𝑅)
rngidm.u 1 = (1r𝑅)
Assertion
Ref Expression
ringridm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)

Proof of Theorem ringridm
StepHypRef Expression
1 rngidm.b . . 3 𝐵 = (Base‘𝑅)
2 rngidm.t . . 3 · = (.r𝑅)
3 rngidm.u . . 3 1 = (1r𝑅)
41, 2, 3ringidmlem 19819 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋))
54simprd 496 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6426  (class class class)co 7267  Basecbs 16922  .rcmulr 16973  1rcur 19747  Ringcrg 19793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-2 12046  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-plusg 16985  df-0g 17162  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-mgp 19731  df-ur 19748  df-ring 19795
This theorem is referenced by:  ringidss  19826  ringinvnz1ne0  19841  rngnegr  19844  imasring  19868  opprring  19883  unitmulcl  19916  unitgrp  19919  dvr1  19941  dvrcan1  19943  dvrcan3  19944  subrginv  20050  issubrg2  20054  lidl1el  20499  uvcresum  21010  frlmssuvc2  21012  asclmul2  21101  psrridm  21183  mplcoe1  21248  mplmon2  21279  evlslem1  21302  mamurid  21601  matsc  21609  scmatscmide  21666  mat1scmat  21698  mulmarep1el  21731  mdet0pr  21751  mdetunilem9  21779  mdetuni0  21780  maducoeval2  21799  madugsum  21802  smadiadetglem2  21831  cramerimplem1  21842  chpmat1dlem  21994  chpdmatlem3  21999  nrginvrcnlem  23865  lgseisenlem4  26536  freshmansdream  31492  ress1r  31494  lfl1sc  37106  eqlkr  37121  eqlkr3  37123  lkrlsp  37124  lcfl7lem  39521  lclkrlem2m  39541  hdmapinvlem3  39942  hdmapglem5  39944  hgmapvvlem1  39945  hdmapglem7b  39950  ringridmd  40251  0prjspnrel  40472  mgpsumn  45677
  Copyright terms: Public domain W3C validator