Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnringlmodd | Structured version Visualization version GIF version |
Description: Monoid rings are left modules. (Contributed by Rohan Ridenour, 14-May-2024.) |
Ref | Expression |
---|---|
mnringlmodd.1 | ⊢ 𝐹 = (𝑅 MndRing 𝑀) |
mnringlmodd.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mnringlmodd.3 | ⊢ (𝜑 → 𝑀 ∈ 𝑈) |
Ref | Expression |
---|---|
mnringlmodd | ⊢ (𝜑 → 𝐹 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringlmodd.2 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | fvexd 6789 | . . 3 ⊢ (𝜑 → (Base‘𝑀) ∈ V) | |
3 | eqid 2738 | . . . 4 ⊢ (𝑅 freeLMod (Base‘𝑀)) = (𝑅 freeLMod (Base‘𝑀)) | |
4 | 3 | frlmlmod 20956 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (Base‘𝑀) ∈ V) → (𝑅 freeLMod (Base‘𝑀)) ∈ LMod) |
5 | 1, 2, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑅 freeLMod (Base‘𝑀)) ∈ LMod) |
6 | eqidd 2739 | . . 3 ⊢ (𝜑 → (Base‘(𝑅 freeLMod (Base‘𝑀))) = (Base‘(𝑅 freeLMod (Base‘𝑀)))) | |
7 | mnringlmodd.1 | . . . 4 ⊢ 𝐹 = (𝑅 MndRing 𝑀) | |
8 | eqid 2738 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
9 | eqid 2738 | . . . 4 ⊢ (Base‘(𝑅 freeLMod (Base‘𝑀))) = (Base‘(𝑅 freeLMod (Base‘𝑀))) | |
10 | mnringlmodd.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑈) | |
11 | 7, 8, 3, 9, 1, 10 | mnringbased 41829 | . . 3 ⊢ (𝜑 → (Base‘(𝑅 freeLMod (Base‘𝑀))) = (Base‘𝐹)) |
12 | 7, 8, 3, 1, 10 | mnringaddgd 41835 | . . . 4 ⊢ (𝜑 → (+g‘(𝑅 freeLMod (Base‘𝑀))) = (+g‘𝐹)) |
13 | 12 | oveqdr 7303 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝑅 freeLMod (Base‘𝑀))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod (Base‘𝑀))))) → (𝑥(+g‘(𝑅 freeLMod (Base‘𝑀)))𝑦) = (𝑥(+g‘𝐹)𝑦)) |
14 | 3 | frlmsca 20960 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (Base‘𝑀) ∈ V) → 𝑅 = (Scalar‘(𝑅 freeLMod (Base‘𝑀)))) |
15 | 1, 2, 14 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑅 = (Scalar‘(𝑅 freeLMod (Base‘𝑀)))) |
16 | 7, 1, 10 | mnringscad 41840 | . . 3 ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) |
17 | eqid 2738 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
18 | 7, 8, 3, 1, 10 | mnringvscad 41842 | . . . 4 ⊢ (𝜑 → ( ·𝑠 ‘(𝑅 freeLMod (Base‘𝑀))) = ( ·𝑠 ‘𝐹)) |
19 | 18 | oveqdr 7303 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod (Base‘𝑀))))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (Base‘𝑀)))𝑦) = (𝑥( ·𝑠 ‘𝐹)𝑦)) |
20 | 6, 11, 13, 15, 16, 17, 19 | lmodpropd 20186 | . 2 ⊢ (𝜑 → ((𝑅 freeLMod (Base‘𝑀)) ∈ LMod ↔ 𝐹 ∈ LMod)) |
21 | 5, 20 | mpbid 231 | 1 ⊢ (𝜑 → 𝐹 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Scalarcsca 16965 ·𝑠 cvsca 16966 Ringcrg 19783 LModclmod 20123 freeLMod cfrlm 20953 MndRing cmnring 41824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-0g 17152 df-prds 17158 df-pws 17160 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-mgp 19721 df-ur 19738 df-ring 19785 df-subrg 20022 df-lmod 20125 df-lss 20194 df-sra 20434 df-rgmod 20435 df-dsmm 20939 df-frlm 20954 df-mnring 41825 |
This theorem is referenced by: mnringmulrcld 41846 |
Copyright terms: Public domain | W3C validator |