![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmdisjr | Structured version Visualization version GIF version |
Description: Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
lsmdisj.o | ⊢ 0 = (0g‘𝐺) |
lsmdisjr.i | ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) |
Ref | Expression |
---|---|
lsmdisjr | ⊢ (𝜑 → ((𝑆 ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmcntz.p | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
2 | lsmcntz.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
3 | lsmcntz.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
4 | lsmcntz.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
5 | lsmdisj.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
6 | incom 4220 | . . . 4 ⊢ (𝑆 ∩ (𝑇 ⊕ 𝑈)) = ((𝑇 ⊕ 𝑈) ∩ 𝑆) | |
7 | lsmdisjr.i | . . . 4 ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) | |
8 | 6, 7 | eqtr3id 2791 | . . 3 ⊢ (𝜑 → ((𝑇 ⊕ 𝑈) ∩ 𝑆) = { 0 }) |
9 | 1, 2, 3, 4, 5, 8 | lsmdisj 19723 | . 2 ⊢ (𝜑 → ((𝑇 ∩ 𝑆) = { 0 } ∧ (𝑈 ∩ 𝑆) = { 0 })) |
10 | incom 4220 | . . . 4 ⊢ (𝑇 ∩ 𝑆) = (𝑆 ∩ 𝑇) | |
11 | 10 | eqeq1i 2742 | . . 3 ⊢ ((𝑇 ∩ 𝑆) = { 0 } ↔ (𝑆 ∩ 𝑇) = { 0 }) |
12 | incom 4220 | . . . 4 ⊢ (𝑈 ∩ 𝑆) = (𝑆 ∩ 𝑈) | |
13 | 12 | eqeq1i 2742 | . . 3 ⊢ ((𝑈 ∩ 𝑆) = { 0 } ↔ (𝑆 ∩ 𝑈) = { 0 }) |
14 | 11, 13 | anbi12i 628 | . 2 ⊢ (((𝑇 ∩ 𝑆) = { 0 } ∧ (𝑈 ∩ 𝑆) = { 0 }) ↔ ((𝑆 ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) |
15 | 9, 14 | sylib 218 | 1 ⊢ (𝜑 → ((𝑆 ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3965 {csn 4634 ‘cfv 6569 (class class class)co 7438 0gc0g 17495 SubGrpcsubg 19160 LSSumclsm 19676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-grp 18976 df-minusg 18977 df-subg 19163 df-lsm 19678 |
This theorem is referenced by: lsmdisj2a 19729 lsmdisj2b 19730 |
Copyright terms: Public domain | W3C validator |