MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexp2r Structured version   Visualization version   GIF version

Theorem ltexp2r 13961
Description: The power of a positive number smaller than 1 decreases as its exponent increases. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
ltexp2r (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (𝑀 < 𝑁 ↔ (𝐴𝑁) < (𝐴𝑀)))

Proof of Theorem ltexp2r
StepHypRef Expression
1 simpl1 1190 . . . . 5 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → 𝐴 ∈ ℝ+)
21rpcnd 12844 . . . 4 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → 𝐴 ∈ ℂ)
31rpne0d 12847 . . . 4 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → 𝐴 ≠ 0)
4 simpl2 1191 . . . 4 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → 𝑀 ∈ ℤ)
5 exprec 13894 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑀 ∈ ℤ) → ((1 / 𝐴)↑𝑀) = (1 / (𝐴𝑀)))
62, 3, 4, 5syl3anc 1370 . . 3 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → ((1 / 𝐴)↑𝑀) = (1 / (𝐴𝑀)))
7 simpl3 1192 . . . 4 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → 𝑁 ∈ ℤ)
8 exprec 13894 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐴)↑𝑁) = (1 / (𝐴𝑁)))
92, 3, 7, 8syl3anc 1370 . . 3 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → ((1 / 𝐴)↑𝑁) = (1 / (𝐴𝑁)))
106, 9breq12d 5098 . 2 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (((1 / 𝐴)↑𝑀) < ((1 / 𝐴)↑𝑁) ↔ (1 / (𝐴𝑀)) < (1 / (𝐴𝑁))))
111rprecred 12853 . . 3 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (1 / 𝐴) ∈ ℝ)
12 simpr 485 . . . 4 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → 𝐴 < 1)
131reclt1d 12855 . . . 4 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
1412, 13mpbid 231 . . 3 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → 1 < (1 / 𝐴))
15 ltexp2 13958 . . 3 ((((1 / 𝐴) ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < (1 / 𝐴)) → (𝑀 < 𝑁 ↔ ((1 / 𝐴)↑𝑀) < ((1 / 𝐴)↑𝑁)))
1611, 4, 7, 14, 15syl31anc 1372 . 2 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (𝑀 < 𝑁 ↔ ((1 / 𝐴)↑𝑀) < ((1 / 𝐴)↑𝑁)))
17 rpexpcl 13871 . . . 4 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
181, 7, 17syl2anc 584 . . 3 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (𝐴𝑁) ∈ ℝ+)
19 rpexpcl 13871 . . . 4 ((𝐴 ∈ ℝ+𝑀 ∈ ℤ) → (𝐴𝑀) ∈ ℝ+)
201, 4, 19syl2anc 584 . . 3 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (𝐴𝑀) ∈ ℝ+)
2118, 20ltrecd 12860 . 2 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → ((𝐴𝑁) < (𝐴𝑀) ↔ (1 / (𝐴𝑀)) < (1 / (𝐴𝑁))))
2210, 16, 213bitr4d 310 1 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (𝑀 < 𝑁 ↔ (𝐴𝑁) < (𝐴𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2941   class class class wbr 5085  (class class class)co 7313  cc 10939  cr 10940  0cc0 10941  1c1 10942   < clt 11079   / cdiv 11702  cz 12389  +crp 12800  cexp 13852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-n0 12304  df-z 12390  df-uz 12653  df-rp 12801  df-seq 13792  df-exp 13853
This theorem is referenced by:  ltexp2rd  14033
  Copyright terms: Public domain W3C validator