MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexp2r Structured version   Visualization version   GIF version

Theorem ltexp2r 14114
Description: The integer powers of a fixed positive real less than 1 decrease as the exponent increases. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
ltexp2r (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (𝑀 < 𝑁 ↔ (𝐴𝑁) < (𝐴𝑀)))

Proof of Theorem ltexp2r
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → 𝐴 ∈ ℝ+)
21rpcnd 12973 . . . 4 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → 𝐴 ∈ ℂ)
31rpne0d 12976 . . . 4 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → 𝐴 ≠ 0)
4 simpl2 1193 . . . 4 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → 𝑀 ∈ ℤ)
5 exprec 14044 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑀 ∈ ℤ) → ((1 / 𝐴)↑𝑀) = (1 / (𝐴𝑀)))
62, 3, 4, 5syl3anc 1373 . . 3 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → ((1 / 𝐴)↑𝑀) = (1 / (𝐴𝑀)))
7 simpl3 1194 . . . 4 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → 𝑁 ∈ ℤ)
8 exprec 14044 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐴)↑𝑁) = (1 / (𝐴𝑁)))
92, 3, 7, 8syl3anc 1373 . . 3 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → ((1 / 𝐴)↑𝑁) = (1 / (𝐴𝑁)))
106, 9breq12d 5115 . 2 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (((1 / 𝐴)↑𝑀) < ((1 / 𝐴)↑𝑁) ↔ (1 / (𝐴𝑀)) < (1 / (𝐴𝑁))))
111rprecred 12982 . . 3 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (1 / 𝐴) ∈ ℝ)
12 simpr 484 . . . 4 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → 𝐴 < 1)
131reclt1d 12984 . . . 4 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
1412, 13mpbid 232 . . 3 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → 1 < (1 / 𝐴))
15 ltexp2 14111 . . 3 ((((1 / 𝐴) ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < (1 / 𝐴)) → (𝑀 < 𝑁 ↔ ((1 / 𝐴)↑𝑀) < ((1 / 𝐴)↑𝑁)))
1611, 4, 7, 14, 15syl31anc 1375 . 2 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (𝑀 < 𝑁 ↔ ((1 / 𝐴)↑𝑀) < ((1 / 𝐴)↑𝑁)))
17 rpexpcl 14021 . . . 4 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
181, 7, 17syl2anc 584 . . 3 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (𝐴𝑁) ∈ ℝ+)
19 rpexpcl 14021 . . . 4 ((𝐴 ∈ ℝ+𝑀 ∈ ℤ) → (𝐴𝑀) ∈ ℝ+)
201, 4, 19syl2anc 584 . . 3 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (𝐴𝑀) ∈ ℝ+)
2118, 20ltrecd 12989 . 2 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → ((𝐴𝑁) < (𝐴𝑀) ↔ (1 / (𝐴𝑀)) < (1 / (𝐴𝑁))))
2210, 16, 213bitr4d 311 1 (((𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (𝑀 < 𝑁 ↔ (𝐴𝑁) < (𝐴𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   < clt 11184   / cdiv 11811  cz 12505  +crp 12927  cexp 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003
This theorem is referenced by:  ltexp2rd  14189
  Copyright terms: Public domain W3C validator