MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leexp2a Structured version   Visualization version   GIF version

Theorem leexp2a 13351
Description: Weak ordering relationship for exponentiation. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
leexp2a ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ≤ (𝐴𝑁))

Proof of Theorem leexp2a
StepHypRef Expression
1 simp1 1116 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
2 0red 10443 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
3 1red 10440 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
4 0lt1 10963 . . . . . . . . 9 0 < 1
54a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 0 < 1)
6 simp2 1117 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ≤ 𝐴)
72, 3, 1, 5, 6ltletrd 10600 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 0 < 𝐴)
81, 7elrpd 12245 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ+)
9 eluzel2 12063 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1093ad2ant3 1115 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
11 rpexpcl 13263 . . . . . 6 ((𝐴 ∈ ℝ+𝑀 ∈ ℤ) → (𝐴𝑀) ∈ ℝ+)
128, 10, 11syl2anc 576 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℝ+)
1312rpred 12248 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℝ)
1413recnd 10468 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℂ)
1514mulid2d 10458 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (1 · (𝐴𝑀)) = (𝐴𝑀))
16 uznn0sub 12091 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
17163ad2ant3 1115 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝑁𝑀) ∈ ℕ0)
18 expge1 13281 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑁𝑀) ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑(𝑁𝑀)))
191, 17, 6, 18syl3anc 1351 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ≤ (𝐴↑(𝑁𝑀)))
201recnd 10468 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
217gt0ne0d 11005 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ≠ 0)
22 eluzelz 12068 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
23223ad2ant3 1115 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
24 expsub 13292 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐴↑(𝑁𝑀)) = ((𝐴𝑁) / (𝐴𝑀)))
2520, 21, 23, 10, 24syl22anc 826 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴↑(𝑁𝑀)) = ((𝐴𝑁) / (𝐴𝑀)))
2619, 25breqtrd 4955 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ≤ ((𝐴𝑁) / (𝐴𝑀)))
27 rpexpcl 13263 . . . . . 6 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
288, 23, 27syl2anc 576 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑁) ∈ ℝ+)
2928rpred 12248 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑁) ∈ ℝ)
303, 29, 12lemuldivd 12297 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → ((1 · (𝐴𝑀)) ≤ (𝐴𝑁) ↔ 1 ≤ ((𝐴𝑁) / (𝐴𝑀))))
3126, 30mpbird 249 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (1 · (𝐴𝑀)) ≤ (𝐴𝑁))
3215, 31eqbrtrrd 4953 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ≤ (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1068   = wceq 1507  wcel 2050  wne 2967   class class class wbr 4929  cfv 6188  (class class class)co 6976  cc 10333  cr 10334  0cc0 10335  1c1 10336   · cmul 10340   < clt 10474  cle 10475  cmin 10670   / cdiv 11098  0cn0 11707  cz 11793  cuz 12058  +crp 12204  cexp 13244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-n0 11708  df-z 11794  df-uz 12059  df-rp 12205  df-seq 13185  df-exp 13245
This theorem is referenced by:  expnlbnd2  13410  digit1  13413  leexp2ad  13432  faclbnd4lem1  13468  climcndslem1  15064  climcndslem2  15065  ef01bndlem  15397  aaliou3lem2  24635
  Copyright terms: Public domain W3C validator