MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leexp2a Structured version   Visualization version   GIF version

Theorem leexp2a 14076
Description: Weak ordering relationship for exponentiation of a fixed real base greater than or equal to 1 to integer exponents. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
leexp2a ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ≤ (𝐴𝑁))

Proof of Theorem leexp2a
StepHypRef Expression
1 simp1 1136 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
2 0red 11112 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
3 1red 11110 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
4 0lt1 11636 . . . . . . . . 9 0 < 1
54a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 0 < 1)
6 simp2 1137 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ≤ 𝐴)
72, 3, 1, 5, 6ltletrd 11270 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 0 < 𝐴)
81, 7elrpd 12928 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ+)
9 eluzel2 12734 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1093ad2ant3 1135 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
11 rpexpcl 13984 . . . . . 6 ((𝐴 ∈ ℝ+𝑀 ∈ ℤ) → (𝐴𝑀) ∈ ℝ+)
128, 10, 11syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℝ+)
1312rpred 12931 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℝ)
1413recnd 11137 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℂ)
1514mullidd 11127 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (1 · (𝐴𝑀)) = (𝐴𝑀))
16 uznn0sub 12768 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
17163ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝑁𝑀) ∈ ℕ0)
18 expge1 14003 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑁𝑀) ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑(𝑁𝑀)))
191, 17, 6, 18syl3anc 1373 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ≤ (𝐴↑(𝑁𝑀)))
201recnd 11137 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
217gt0ne0d 11678 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ≠ 0)
22 eluzelz 12739 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
23223ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
24 expsub 14014 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐴↑(𝑁𝑀)) = ((𝐴𝑁) / (𝐴𝑀)))
2520, 21, 23, 10, 24syl22anc 838 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴↑(𝑁𝑀)) = ((𝐴𝑁) / (𝐴𝑀)))
2619, 25breqtrd 5117 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ≤ ((𝐴𝑁) / (𝐴𝑀)))
27 rpexpcl 13984 . . . . . 6 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
288, 23, 27syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑁) ∈ ℝ+)
2928rpred 12931 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑁) ∈ ℝ)
303, 29, 12lemuldivd 12980 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → ((1 · (𝐴𝑀)) ≤ (𝐴𝑁) ↔ 1 ≤ ((𝐴𝑁) / (𝐴𝑀))))
3126, 30mpbird 257 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (1 · (𝐴𝑀)) ≤ (𝐴𝑁))
3215, 31eqbrtrrd 5115 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ≤ (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004   · cmul 11008   < clt 11143  cle 11144  cmin 11341   / cdiv 11771  0cn0 12378  cz 12465  cuz 12729  +crp 12887  cexp 13965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-seq 13906  df-exp 13966
This theorem is referenced by:  expnlbnd2  14138  digit1  14141  leexp2ad  14158  faclbnd4lem1  14197  climcndslem1  15753  climcndslem2  15754  ef01bndlem  16090  aaliou3lem2  26276  ackval42  48727
  Copyright terms: Public domain W3C validator