MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leexp2a Structured version   Visualization version   GIF version

Theorem leexp2a 14144
Description: Weak ordering relationship for exponentiation of a fixed real base greater than or equal to 1 to integer exponents. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
leexp2a ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ≤ (𝐴𝑁))

Proof of Theorem leexp2a
StepHypRef Expression
1 simp1 1136 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
2 0red 11184 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
3 1red 11182 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
4 0lt1 11707 . . . . . . . . 9 0 < 1
54a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 0 < 1)
6 simp2 1137 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ≤ 𝐴)
72, 3, 1, 5, 6ltletrd 11341 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 0 < 𝐴)
81, 7elrpd 12999 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ+)
9 eluzel2 12805 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1093ad2ant3 1135 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
11 rpexpcl 14052 . . . . . 6 ((𝐴 ∈ ℝ+𝑀 ∈ ℤ) → (𝐴𝑀) ∈ ℝ+)
128, 10, 11syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℝ+)
1312rpred 13002 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℝ)
1413recnd 11209 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℂ)
1514mullidd 11199 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (1 · (𝐴𝑀)) = (𝐴𝑀))
16 uznn0sub 12839 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
17163ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝑁𝑀) ∈ ℕ0)
18 expge1 14071 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑁𝑀) ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑(𝑁𝑀)))
191, 17, 6, 18syl3anc 1373 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ≤ (𝐴↑(𝑁𝑀)))
201recnd 11209 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
217gt0ne0d 11749 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ≠ 0)
22 eluzelz 12810 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
23223ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
24 expsub 14082 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐴↑(𝑁𝑀)) = ((𝐴𝑁) / (𝐴𝑀)))
2520, 21, 23, 10, 24syl22anc 838 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴↑(𝑁𝑀)) = ((𝐴𝑁) / (𝐴𝑀)))
2619, 25breqtrd 5136 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ≤ ((𝐴𝑁) / (𝐴𝑀)))
27 rpexpcl 14052 . . . . . 6 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
288, 23, 27syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑁) ∈ ℝ+)
2928rpred 13002 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑁) ∈ ℝ)
303, 29, 12lemuldivd 13051 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → ((1 · (𝐴𝑀)) ≤ (𝐴𝑁) ↔ 1 ≤ ((𝐴𝑁) / (𝐴𝑀))))
3126, 30mpbird 257 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (1 · (𝐴𝑀)) ≤ (𝐴𝑁))
3215, 31eqbrtrrd 5134 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ≤ (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  0cn0 12449  cz 12536  cuz 12800  +crp 12958  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034
This theorem is referenced by:  expnlbnd2  14206  digit1  14209  leexp2ad  14226  faclbnd4lem1  14265  climcndslem1  15822  climcndslem2  15823  ef01bndlem  16159  aaliou3lem2  26258  ackval42  48689
  Copyright terms: Public domain W3C validator