| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leexp2a | Structured version Visualization version GIF version | ||
| Description: Weak ordering relationship for exponentiation of a fixed real base greater than or equal to 1 to integer exponents. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| Ref | Expression |
|---|---|
| leexp2a | ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℝ) | |
| 2 | 0red 11177 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 0 ∈ ℝ) | |
| 3 | 1red 11175 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ∈ ℝ) | |
| 4 | 0lt1 11700 | . . . . . . . . 9 ⊢ 0 < 1 | |
| 5 | 4 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 0 < 1) |
| 6 | simp2 1137 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ≤ 𝐴) | |
| 7 | 2, 3, 1, 5, 6 | ltletrd 11334 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 0 < 𝐴) |
| 8 | 1, 7 | elrpd 12992 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℝ+) |
| 9 | eluzel2 12798 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 10 | 9 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) |
| 11 | rpexpcl 14045 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ) → (𝐴↑𝑀) ∈ ℝ+) | |
| 12 | 8, 10, 11 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℝ+) |
| 13 | 12 | rpred 12995 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℝ) |
| 14 | 13 | recnd 11202 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℂ) |
| 15 | 14 | mullidd 11192 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (1 · (𝐴↑𝑀)) = (𝐴↑𝑀)) |
| 16 | uznn0sub 12832 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) | |
| 17 | 16 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑁 − 𝑀) ∈ ℕ0) |
| 18 | expge1 14064 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 − 𝑀) ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑(𝑁 − 𝑀))) | |
| 19 | 1, 17, 6, 18 | syl3anc 1373 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ≤ (𝐴↑(𝑁 − 𝑀))) |
| 20 | 1 | recnd 11202 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) |
| 21 | 7 | gt0ne0d 11742 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ≠ 0) |
| 22 | eluzelz 12803 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 23 | 22 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
| 24 | expsub 14075 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐴↑(𝑁 − 𝑀)) = ((𝐴↑𝑁) / (𝐴↑𝑀))) | |
| 25 | 20, 21, 23, 10, 24 | syl22anc 838 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑(𝑁 − 𝑀)) = ((𝐴↑𝑁) / (𝐴↑𝑀))) |
| 26 | 19, 25 | breqtrd 5133 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ≤ ((𝐴↑𝑁) / (𝐴↑𝑀))) |
| 27 | rpexpcl 14045 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | |
| 28 | 8, 23, 27 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑁) ∈ ℝ+) |
| 29 | 28 | rpred 12995 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑁) ∈ ℝ) |
| 30 | 3, 29, 12 | lemuldivd 13044 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((1 · (𝐴↑𝑀)) ≤ (𝐴↑𝑁) ↔ 1 ≤ ((𝐴↑𝑁) / (𝐴↑𝑀)))) |
| 31 | 26, 30 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (1 · (𝐴↑𝑀)) ≤ (𝐴↑𝑁)) |
| 32 | 15, 31 | eqbrtrrd 5131 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 · cmul 11073 < clt 11208 ≤ cle 11209 − cmin 11405 / cdiv 11835 ℕ0cn0 12442 ℤcz 12529 ℤ≥cuz 12793 ℝ+crp 12951 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: expnlbnd2 14199 digit1 14202 leexp2ad 14219 faclbnd4lem1 14258 climcndslem1 15815 climcndslem2 15816 ef01bndlem 16152 aaliou3lem2 26251 ackval42 48685 |
| Copyright terms: Public domain | W3C validator |