MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leexp2r Structured version   Visualization version   GIF version

Theorem leexp2r 13212
Description: Weak ordering relationship for exponentiation. (Contributed by Paul Chapman, 14-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Assertion
Ref Expression
leexp2r (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀))

Proof of Theorem leexp2r
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6913 . . . . . . . 8 (𝑗 = 𝑀 → (𝐴𝑗) = (𝐴𝑀))
21breq1d 4883 . . . . . . 7 (𝑗 = 𝑀 → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴𝑀) ≤ (𝐴𝑀)))
32imbi2d 332 . . . . . 6 (𝑗 = 𝑀 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ≤ (𝐴𝑀))))
4 oveq2 6913 . . . . . . . 8 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
54breq1d 4883 . . . . . . 7 (𝑗 = 𝑘 → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴𝑘) ≤ (𝐴𝑀)))
65imbi2d 332 . . . . . 6 (𝑗 = 𝑘 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑘) ≤ (𝐴𝑀))))
7 oveq2 6913 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
87breq1d 4883 . . . . . . 7 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
98imbi2d 332 . . . . . 6 (𝑗 = (𝑘 + 1) → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀))))
10 oveq2 6913 . . . . . . . 8 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1110breq1d 4883 . . . . . . 7 (𝑗 = 𝑁 → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴𝑁) ≤ (𝐴𝑀)))
1211imbi2d 332 . . . . . 6 (𝑗 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀))))
13 reexpcl 13171 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℝ)
1413adantr 474 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ∈ ℝ)
1514leidd 10918 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ≤ (𝐴𝑀))
1615a1i 11 . . . . . 6 (𝑀 ∈ ℤ → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ≤ (𝐴𝑀)))
17 simprll 799 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝐴 ∈ ℝ)
18 1red 10357 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 1 ∈ ℝ)
19 simprlr 800 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝑀 ∈ ℕ0)
20 simpl 476 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝑘 ∈ (ℤ𝑀))
21 eluznn0 12040 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
2219, 20, 21syl2anc 581 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝑘 ∈ ℕ0)
23 reexpcl 13171 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
2417, 22, 23syl2anc 581 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑘) ∈ ℝ)
25 simprrl 801 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 0 ≤ 𝐴)
26 expge0 13190 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑘))
2717, 22, 25, 26syl3anc 1496 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 0 ≤ (𝐴𝑘))
28 simprrr 802 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝐴 ≤ 1)
2917, 18, 24, 27, 28lemul2ad 11294 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → ((𝐴𝑘) · 𝐴) ≤ ((𝐴𝑘) · 1))
3017recnd 10385 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝐴 ∈ ℂ)
31 expp1 13161 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3230, 22, 31syl2anc 581 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3324recnd 10385 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑘) ∈ ℂ)
3433mulid1d 10374 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → ((𝐴𝑘) · 1) = (𝐴𝑘))
3534eqcomd 2831 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑘) = ((𝐴𝑘) · 1))
3629, 32, 353brtr4d 4905 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑘))
37 peano2nn0 11660 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3822, 37syl 17 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝑘 + 1) ∈ ℕ0)
39 reexpcl 13171 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴↑(𝑘 + 1)) ∈ ℝ)
4017, 38, 39syl2anc 581 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) ∈ ℝ)
4113ad2antrl 721 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑀) ∈ ℝ)
42 letr 10450 . . . . . . . . . 10 (((𝐴↑(𝑘 + 1)) ∈ ℝ ∧ (𝐴𝑘) ∈ ℝ ∧ (𝐴𝑀) ∈ ℝ) → (((𝐴↑(𝑘 + 1)) ≤ (𝐴𝑘) ∧ (𝐴𝑘) ≤ (𝐴𝑀)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
4340, 24, 41, 42syl3anc 1496 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (((𝐴↑(𝑘 + 1)) ≤ (𝐴𝑘) ∧ (𝐴𝑘) ≤ (𝐴𝑀)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
4436, 43mpand 688 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → ((𝐴𝑘) ≤ (𝐴𝑀) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
4544ex 403 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → ((𝐴𝑘) ≤ (𝐴𝑀) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀))))
4645a2d 29 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑘) ≤ (𝐴𝑀)) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀))))
473, 6, 9, 12, 16, 46uzind4 12028 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀)))
4847expd 406 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → ((0 ≤ 𝐴𝐴 ≤ 1) → (𝐴𝑁) ≤ (𝐴𝑀))))
4948com12 32 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑀) → ((0 ≤ 𝐴𝐴 ≤ 1) → (𝐴𝑁) ≤ (𝐴𝑀))))
50493impia 1151 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((0 ≤ 𝐴𝐴 ≤ 1) → (𝐴𝑁) ≤ (𝐴𝑀)))
5150imp 397 1 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166   class class class wbr 4873  cfv 6123  (class class class)co 6905  cc 10250  cr 10251  0cc0 10252  1c1 10253   + caddc 10255   · cmul 10257  cle 10392  0cn0 11618  cz 11704  cuz 11968  cexp 13154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-seq 13096  df-exp 13155
This theorem is referenced by:  exple1  13214  leexp2rd  13338
  Copyright terms: Public domain W3C validator