MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leexp2r Structured version   Visualization version   GIF version

Theorem leexp2r 13534
Description: Weak ordering relationship for exponentiation. (Contributed by Paul Chapman, 14-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Assertion
Ref Expression
leexp2r (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀))

Proof of Theorem leexp2r
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7143 . . . . . . . 8 (𝑗 = 𝑀 → (𝐴𝑗) = (𝐴𝑀))
21breq1d 5040 . . . . . . 7 (𝑗 = 𝑀 → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴𝑀) ≤ (𝐴𝑀)))
32imbi2d 344 . . . . . 6 (𝑗 = 𝑀 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ≤ (𝐴𝑀))))
4 oveq2 7143 . . . . . . . 8 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
54breq1d 5040 . . . . . . 7 (𝑗 = 𝑘 → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴𝑘) ≤ (𝐴𝑀)))
65imbi2d 344 . . . . . 6 (𝑗 = 𝑘 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑘) ≤ (𝐴𝑀))))
7 oveq2 7143 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
87breq1d 5040 . . . . . . 7 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
98imbi2d 344 . . . . . 6 (𝑗 = (𝑘 + 1) → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀))))
10 oveq2 7143 . . . . . . . 8 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1110breq1d 5040 . . . . . . 7 (𝑗 = 𝑁 → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴𝑁) ≤ (𝐴𝑀)))
1211imbi2d 344 . . . . . 6 (𝑗 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀))))
13 reexpcl 13442 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℝ)
1413adantr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ∈ ℝ)
1514leidd 11195 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ≤ (𝐴𝑀))
16 simprll 778 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝐴 ∈ ℝ)
17 1red 10631 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 1 ∈ ℝ)
18 simprlr 779 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝑀 ∈ ℕ0)
19 simpl 486 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝑘 ∈ (ℤ𝑀))
20 eluznn0 12305 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
2118, 19, 20syl2anc 587 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝑘 ∈ ℕ0)
22 reexpcl 13442 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
2316, 21, 22syl2anc 587 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑘) ∈ ℝ)
24 simprrl 780 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 0 ≤ 𝐴)
25 expge0 13461 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑘))
2616, 21, 24, 25syl3anc 1368 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 0 ≤ (𝐴𝑘))
27 simprrr 781 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝐴 ≤ 1)
2816, 17, 23, 26, 27lemul2ad 11569 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → ((𝐴𝑘) · 𝐴) ≤ ((𝐴𝑘) · 1))
2916recnd 10658 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝐴 ∈ ℂ)
30 expp1 13432 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3129, 21, 30syl2anc 587 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3223recnd 10658 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑘) ∈ ℂ)
3332mulid1d 10647 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → ((𝐴𝑘) · 1) = (𝐴𝑘))
3433eqcomd 2804 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑘) = ((𝐴𝑘) · 1))
3528, 31, 343brtr4d 5062 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑘))
36 peano2nn0 11925 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3721, 36syl 17 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝑘 + 1) ∈ ℕ0)
38 reexpcl 13442 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴↑(𝑘 + 1)) ∈ ℝ)
3916, 37, 38syl2anc 587 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) ∈ ℝ)
4013ad2antrl 727 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑀) ∈ ℝ)
41 letr 10723 . . . . . . . . . 10 (((𝐴↑(𝑘 + 1)) ∈ ℝ ∧ (𝐴𝑘) ∈ ℝ ∧ (𝐴𝑀) ∈ ℝ) → (((𝐴↑(𝑘 + 1)) ≤ (𝐴𝑘) ∧ (𝐴𝑘) ≤ (𝐴𝑀)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
4239, 23, 40, 41syl3anc 1368 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (((𝐴↑(𝑘 + 1)) ≤ (𝐴𝑘) ∧ (𝐴𝑘) ≤ (𝐴𝑀)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
4335, 42mpand 694 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → ((𝐴𝑘) ≤ (𝐴𝑀) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
4443ex 416 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → ((𝐴𝑘) ≤ (𝐴𝑀) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀))))
4544a2d 29 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑘) ≤ (𝐴𝑀)) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀))))
463, 6, 9, 12, 15, 45uzind4i 12298 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀)))
4746expd 419 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → ((0 ≤ 𝐴𝐴 ≤ 1) → (𝐴𝑁) ≤ (𝐴𝑀))))
4847com12 32 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑀) → ((0 ≤ 𝐴𝐴 ≤ 1) → (𝐴𝑁) ≤ (𝐴𝑀))))
49483impia 1114 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((0 ≤ 𝐴𝐴 ≤ 1) → (𝐴𝑁) ≤ (𝐴𝑀)))
5049imp 410 1 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cle 10665  0cn0 11885  cuz 12231  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-exp 13426
This theorem is referenced by:  exple1  13536  leexp2rd  13614
  Copyright terms: Public domain W3C validator