MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leexp2r Structured version   Visualization version   GIF version

Theorem leexp2r 14146
Description: Weak ordering relationship for exponentiation of a fixed real base in [0, 1] to integer exponents. (Contributed by Paul Chapman, 14-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Assertion
Ref Expression
leexp2r (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀))

Proof of Theorem leexp2r
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . . . . . 8 (𝑗 = 𝑀 → (𝐴𝑗) = (𝐴𝑀))
21breq1d 5120 . . . . . . 7 (𝑗 = 𝑀 → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴𝑀) ≤ (𝐴𝑀)))
32imbi2d 340 . . . . . 6 (𝑗 = 𝑀 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ≤ (𝐴𝑀))))
4 oveq2 7398 . . . . . . . 8 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
54breq1d 5120 . . . . . . 7 (𝑗 = 𝑘 → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴𝑘) ≤ (𝐴𝑀)))
65imbi2d 340 . . . . . 6 (𝑗 = 𝑘 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑘) ≤ (𝐴𝑀))))
7 oveq2 7398 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
87breq1d 5120 . . . . . . 7 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
98imbi2d 340 . . . . . 6 (𝑗 = (𝑘 + 1) → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀))))
10 oveq2 7398 . . . . . . . 8 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1110breq1d 5120 . . . . . . 7 (𝑗 = 𝑁 → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴𝑁) ≤ (𝐴𝑀)))
1211imbi2d 340 . . . . . 6 (𝑗 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀))))
13 reexpcl 14050 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℝ)
1413adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ∈ ℝ)
1514leidd 11751 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ≤ (𝐴𝑀))
16 simprll 778 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝐴 ∈ ℝ)
17 1red 11182 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 1 ∈ ℝ)
18 simprlr 779 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝑀 ∈ ℕ0)
19 simpl 482 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝑘 ∈ (ℤ𝑀))
20 eluznn0 12883 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
2118, 19, 20syl2anc 584 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝑘 ∈ ℕ0)
22 reexpcl 14050 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
2316, 21, 22syl2anc 584 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑘) ∈ ℝ)
24 simprrl 780 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 0 ≤ 𝐴)
25 expge0 14070 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑘))
2616, 21, 24, 25syl3anc 1373 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 0 ≤ (𝐴𝑘))
27 simprrr 781 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝐴 ≤ 1)
2816, 17, 23, 26, 27lemul2ad 12130 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → ((𝐴𝑘) · 𝐴) ≤ ((𝐴𝑘) · 1))
2916recnd 11209 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝐴 ∈ ℂ)
30 expp1 14040 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3129, 21, 30syl2anc 584 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3223recnd 11209 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑘) ∈ ℂ)
3332mulridd 11198 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → ((𝐴𝑘) · 1) = (𝐴𝑘))
3433eqcomd 2736 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑘) = ((𝐴𝑘) · 1))
3528, 31, 343brtr4d 5142 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑘))
36 peano2nn0 12489 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3721, 36syl 17 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝑘 + 1) ∈ ℕ0)
38 reexpcl 14050 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴↑(𝑘 + 1)) ∈ ℝ)
3916, 37, 38syl2anc 584 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) ∈ ℝ)
4013ad2antrl 728 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑀) ∈ ℝ)
41 letr 11275 . . . . . . . . . 10 (((𝐴↑(𝑘 + 1)) ∈ ℝ ∧ (𝐴𝑘) ∈ ℝ ∧ (𝐴𝑀) ∈ ℝ) → (((𝐴↑(𝑘 + 1)) ≤ (𝐴𝑘) ∧ (𝐴𝑘) ≤ (𝐴𝑀)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
4239, 23, 40, 41syl3anc 1373 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (((𝐴↑(𝑘 + 1)) ≤ (𝐴𝑘) ∧ (𝐴𝑘) ≤ (𝐴𝑀)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
4335, 42mpand 695 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → ((𝐴𝑘) ≤ (𝐴𝑀) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
4443ex 412 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → ((𝐴𝑘) ≤ (𝐴𝑀) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀))))
4544a2d 29 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑘) ≤ (𝐴𝑀)) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀))))
463, 6, 9, 12, 15, 45uzind4i 12876 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀)))
4746expd 415 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → ((0 ≤ 𝐴𝐴 ≤ 1) → (𝐴𝑁) ≤ (𝐴𝑀))))
4847com12 32 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑀) → ((0 ≤ 𝐴𝐴 ≤ 1) → (𝐴𝑁) ≤ (𝐴𝑀))))
49483impia 1117 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((0 ≤ 𝐴𝐴 ≤ 1) → (𝐴𝑁) ≤ (𝐴𝑀)))
5049imp 406 1 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  0cn0 12449  cuz 12800  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-exp 14034
This theorem is referenced by:  exple1  14149  leexp2rd  14227
  Copyright terms: Public domain W3C validator