Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt27 Structured version   Visualization version   GIF version

Theorem metakunt27 41817
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
Hypotheses
Ref Expression
metakunt27.1 (𝜑𝑀 ∈ ℕ)
metakunt27.2 (𝜑𝐼 ∈ ℕ)
metakunt27.3 (𝜑𝐼𝑀)
metakunt27.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt27.5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt27.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt27.7 (𝜑 → ¬ 𝑋 = 𝐼)
metakunt27.8 (𝜑𝑋 < 𝐼)
Assertion
Ref Expression
metakunt27 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋 + (𝑀𝐼)))
Distinct variable groups:   𝑧,𝐼   𝑥,𝑀   𝑧,𝑀   𝑥,𝑋   𝑧,𝑋   𝜑,𝑥   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑧)   𝐼(𝑥)

Proof of Theorem metakunt27
StepHypRef Expression
1 metakunt27.5 . . . . 5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . . . 4 (𝜑𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 metakunt27.7 . . . . . . . 8 (𝜑 → ¬ 𝑋 = 𝐼)
43adantr 479 . . . . . . 7 ((𝜑𝑥 = 𝑋) → ¬ 𝑋 = 𝐼)
5 simpr 483 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
65eqeq1d 2727 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝑥 = 𝐼𝑋 = 𝐼))
76notbid 317 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (¬ 𝑥 = 𝐼 ↔ ¬ 𝑋 = 𝐼))
84, 7mpbird 256 . . . . . 6 ((𝜑𝑥 = 𝑋) → ¬ 𝑥 = 𝐼)
98iffalsed 4541 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))
10 metakunt27.8 . . . . . . . . 9 (𝜑𝑋 < 𝐼)
1110adantr 479 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → 𝑋 < 𝐼)
125breq1d 5159 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝑥 < 𝐼𝑋 < 𝐼))
1311, 12mpbird 256 . . . . . . 7 ((𝜑𝑥 = 𝑋) → 𝑥 < 𝐼)
1413iftrued 4538 . . . . . 6 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = 𝑥)
1514, 5eqtrd 2765 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = 𝑋)
169, 15eqtrd 2765 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑋)
17 metakunt27.4 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
182, 16, 17, 17fvmptd 7011 . . 3 (𝜑 → (𝐴𝑋) = 𝑋)
1918fveq2d 6900 . 2 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝐵𝑋))
20 metakunt27.6 . . . 4 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
2120a1i 11 . . 3 (𝜑𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))))
22 elfznn 13565 . . . . . . . . . . 11 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
2317, 22syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ ℕ)
2423nnred 12260 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
25 metakunt27.2 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℕ)
2625nnred 12260 . . . . . . . . . 10 (𝜑𝐼 ∈ ℝ)
27 metakunt27.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
2827nnred 12260 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
29 metakunt27.3 . . . . . . . . . 10 (𝜑𝐼𝑀)
3024, 26, 28, 10, 29ltletrd 11406 . . . . . . . . 9 (𝜑𝑋 < 𝑀)
3124, 30ltned 11382 . . . . . . . 8 (𝜑𝑋𝑀)
3231neneqd 2934 . . . . . . 7 (𝜑 → ¬ 𝑋 = 𝑀)
3332adantr 479 . . . . . 6 ((𝜑𝑧 = 𝑋) → ¬ 𝑋 = 𝑀)
34 simpr 483 . . . . . . . 8 ((𝜑𝑧 = 𝑋) → 𝑧 = 𝑋)
3534eqeq1d 2727 . . . . . . 7 ((𝜑𝑧 = 𝑋) → (𝑧 = 𝑀𝑋 = 𝑀))
3635notbid 317 . . . . . 6 ((𝜑𝑧 = 𝑋) → (¬ 𝑧 = 𝑀 ↔ ¬ 𝑋 = 𝑀))
3733, 36mpbird 256 . . . . 5 ((𝜑𝑧 = 𝑋) → ¬ 𝑧 = 𝑀)
3837iffalsed 4541 . . . 4 ((𝜑𝑧 = 𝑋) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))
3910adantr 479 . . . . . . 7 ((𝜑𝑧 = 𝑋) → 𝑋 < 𝐼)
4034breq1d 5159 . . . . . . 7 ((𝜑𝑧 = 𝑋) → (𝑧 < 𝐼𝑋 < 𝐼))
4139, 40mpbird 256 . . . . . 6 ((𝜑𝑧 = 𝑋) → 𝑧 < 𝐼)
4241iftrued 4538 . . . . 5 ((𝜑𝑧 = 𝑋) → if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))) = (𝑧 + (𝑀𝐼)))
4334oveq1d 7434 . . . . 5 ((𝜑𝑧 = 𝑋) → (𝑧 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
4442, 43eqtrd 2765 . . . 4 ((𝜑𝑧 = 𝑋) → if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))) = (𝑋 + (𝑀𝐼)))
4538, 44eqtrd 2765 . . 3 ((𝜑𝑧 = 𝑋) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = (𝑋 + (𝑀𝐼)))
4617elfzelzd 13537 . . . 4 (𝜑𝑋 ∈ ℤ)
4727nnzd 12618 . . . . 5 (𝜑𝑀 ∈ ℤ)
4825nnzd 12618 . . . . 5 (𝜑𝐼 ∈ ℤ)
4947, 48zsubcld 12704 . . . 4 (𝜑 → (𝑀𝐼) ∈ ℤ)
5046, 49zaddcld 12703 . . 3 (𝜑 → (𝑋 + (𝑀𝐼)) ∈ ℤ)
5121, 45, 17, 50fvmptd 7011 . 2 (𝜑 → (𝐵𝑋) = (𝑋 + (𝑀𝐼)))
5219, 51eqtrd 2765 1 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋 + (𝑀𝐼)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  ifcif 4530   class class class wbr 5149  cmpt 5232  cfv 6549  (class class class)co 7419  1c1 11141   + caddc 11143   < clt 11280  cle 11281  cmin 11476  cn 12245  cz 12591  ...cfz 13519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520
This theorem is referenced by:  metakunt29  41819
  Copyright terms: Public domain W3C validator