Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt27 Structured version   Visualization version   GIF version

Theorem metakunt27 40131
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
Hypotheses
Ref Expression
metakunt27.1 (𝜑𝑀 ∈ ℕ)
metakunt27.2 (𝜑𝐼 ∈ ℕ)
metakunt27.3 (𝜑𝐼𝑀)
metakunt27.4 (𝜑𝑋 ∈ (1...𝑀))
metakunt27.5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt27.6 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt27.7 (𝜑 → ¬ 𝑋 = 𝐼)
metakunt27.8 (𝜑𝑋 < 𝐼)
Assertion
Ref Expression
metakunt27 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋 + (𝑀𝐼)))
Distinct variable groups:   𝑧,𝐼   𝑥,𝑀   𝑧,𝑀   𝑥,𝑋   𝑧,𝑋   𝜑,𝑥   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑧)   𝐼(𝑥)

Proof of Theorem metakunt27
StepHypRef Expression
1 metakunt27.5 . . . . 5 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . . . 4 (𝜑𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 metakunt27.7 . . . . . . . 8 (𝜑 → ¬ 𝑋 = 𝐼)
43adantr 480 . . . . . . 7 ((𝜑𝑥 = 𝑋) → ¬ 𝑋 = 𝐼)
5 simpr 484 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
65eqeq1d 2741 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝑥 = 𝐼𝑋 = 𝐼))
76notbid 317 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (¬ 𝑥 = 𝐼 ↔ ¬ 𝑋 = 𝐼))
84, 7mpbird 256 . . . . . 6 ((𝜑𝑥 = 𝑋) → ¬ 𝑥 = 𝐼)
98iffalsed 4475 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))
10 metakunt27.8 . . . . . . . . 9 (𝜑𝑋 < 𝐼)
1110adantr 480 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → 𝑋 < 𝐼)
125breq1d 5088 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → (𝑥 < 𝐼𝑋 < 𝐼))
1311, 12mpbird 256 . . . . . . 7 ((𝜑𝑥 = 𝑋) → 𝑥 < 𝐼)
1413iftrued 4472 . . . . . 6 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = 𝑥)
1514, 5eqtrd 2779 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = 𝑋)
169, 15eqtrd 2779 . . . 4 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = 𝑋)
17 metakunt27.4 . . . 4 (𝜑𝑋 ∈ (1...𝑀))
182, 16, 17, 17fvmptd 6876 . . 3 (𝜑 → (𝐴𝑋) = 𝑋)
1918fveq2d 6772 . 2 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝐵𝑋))
20 metakunt27.6 . . . 4 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
2120a1i 11 . . 3 (𝜑𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))))
22 elfznn 13267 . . . . . . . . . . 11 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
2317, 22syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ ℕ)
2423nnred 11971 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
25 metakunt27.2 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℕ)
2625nnred 11971 . . . . . . . . . 10 (𝜑𝐼 ∈ ℝ)
27 metakunt27.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
2827nnred 11971 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
29 metakunt27.3 . . . . . . . . . 10 (𝜑𝐼𝑀)
3024, 26, 28, 10, 29ltletrd 11118 . . . . . . . . 9 (𝜑𝑋 < 𝑀)
3124, 30ltned 11094 . . . . . . . 8 (𝜑𝑋𝑀)
3231neneqd 2949 . . . . . . 7 (𝜑 → ¬ 𝑋 = 𝑀)
3332adantr 480 . . . . . 6 ((𝜑𝑧 = 𝑋) → ¬ 𝑋 = 𝑀)
34 simpr 484 . . . . . . . 8 ((𝜑𝑧 = 𝑋) → 𝑧 = 𝑋)
3534eqeq1d 2741 . . . . . . 7 ((𝜑𝑧 = 𝑋) → (𝑧 = 𝑀𝑋 = 𝑀))
3635notbid 317 . . . . . 6 ((𝜑𝑧 = 𝑋) → (¬ 𝑧 = 𝑀 ↔ ¬ 𝑋 = 𝑀))
3733, 36mpbird 256 . . . . 5 ((𝜑𝑧 = 𝑋) → ¬ 𝑧 = 𝑀)
3837iffalsed 4475 . . . 4 ((𝜑𝑧 = 𝑋) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))))
3910adantr 480 . . . . . . 7 ((𝜑𝑧 = 𝑋) → 𝑋 < 𝐼)
4034breq1d 5088 . . . . . . 7 ((𝜑𝑧 = 𝑋) → (𝑧 < 𝐼𝑋 < 𝐼))
4139, 40mpbird 256 . . . . . 6 ((𝜑𝑧 = 𝑋) → 𝑧 < 𝐼)
4241iftrued 4472 . . . . 5 ((𝜑𝑧 = 𝑋) → if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))) = (𝑧 + (𝑀𝐼)))
4334oveq1d 7283 . . . . 5 ((𝜑𝑧 = 𝑋) → (𝑧 + (𝑀𝐼)) = (𝑋 + (𝑀𝐼)))
4442, 43eqtrd 2779 . . . 4 ((𝜑𝑧 = 𝑋) → if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼))) = (𝑋 + (𝑀𝐼)))
4538, 44eqtrd 2779 . . 3 ((𝜑𝑧 = 𝑋) → if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))) = (𝑋 + (𝑀𝐼)))
4617elfzelzd 13239 . . . 4 (𝜑𝑋 ∈ ℤ)
4727nnzd 12407 . . . . 5 (𝜑𝑀 ∈ ℤ)
4825nnzd 12407 . . . . 5 (𝜑𝐼 ∈ ℤ)
4947, 48zsubcld 12413 . . . 4 (𝜑 → (𝑀𝐼) ∈ ℤ)
5046, 49zaddcld 12412 . . 3 (𝜑 → (𝑋 + (𝑀𝐼)) ∈ ℤ)
5121, 45, 17, 50fvmptd 6876 . 2 (𝜑 → (𝐵𝑋) = (𝑋 + (𝑀𝐼)))
5219, 51eqtrd 2779 1 (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋 + (𝑀𝐼)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2109  ifcif 4464   class class class wbr 5078  cmpt 5161  cfv 6430  (class class class)co 7268  1c1 10856   + caddc 10858   < clt 10993  cle 10994  cmin 11188  cn 11956  cz 12302  ...cfz 13221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222
This theorem is referenced by:  metakunt29  40133
  Copyright terms: Public domain W3C validator