Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > modsub12d | Structured version Visualization version GIF version |
Description: Subtraction property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.) |
Ref | Expression |
---|---|
modadd12d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
modadd12d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
modadd12d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
modadd12d.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
modadd12d.5 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
modadd12d.6 | ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) |
modadd12d.7 | ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) |
Ref | Expression |
---|---|
modsub12d | ⊢ (𝜑 → ((𝐴 − 𝐶) mod 𝐸) = ((𝐵 − 𝐷) mod 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modadd12d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | modadd12d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | modadd12d.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | 3 | renegcld 11098 | . . 3 ⊢ (𝜑 → -𝐶 ∈ ℝ) |
5 | modadd12d.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
6 | 5 | renegcld 11098 | . . 3 ⊢ (𝜑 → -𝐷 ∈ ℝ) |
7 | modadd12d.5 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
8 | modadd12d.6 | . . 3 ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) | |
9 | modadd12d.7 | . . . 4 ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) | |
10 | 3, 5, 7, 9 | modnegd 13336 | . . 3 ⊢ (𝜑 → (-𝐶 mod 𝐸) = (-𝐷 mod 𝐸)) |
11 | 1, 2, 4, 6, 7, 8, 10 | modadd12d 13337 | . 2 ⊢ (𝜑 → ((𝐴 + -𝐶) mod 𝐸) = ((𝐵 + -𝐷) mod 𝐸)) |
12 | 1 | recnd 10700 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
13 | 3 | recnd 10700 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
14 | 12, 13 | negsubd 11034 | . . 3 ⊢ (𝜑 → (𝐴 + -𝐶) = (𝐴 − 𝐶)) |
15 | 14 | oveq1d 7166 | . 2 ⊢ (𝜑 → ((𝐴 + -𝐶) mod 𝐸) = ((𝐴 − 𝐶) mod 𝐸)) |
16 | 2 | recnd 10700 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
17 | 5 | recnd 10700 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
18 | 16, 17 | negsubd 11034 | . . 3 ⊢ (𝜑 → (𝐵 + -𝐷) = (𝐵 − 𝐷)) |
19 | 18 | oveq1d 7166 | . 2 ⊢ (𝜑 → ((𝐵 + -𝐷) mod 𝐸) = ((𝐵 − 𝐷) mod 𝐸)) |
20 | 11, 15, 19 | 3eqtr3d 2802 | 1 ⊢ (𝜑 → ((𝐴 − 𝐶) mod 𝐸) = ((𝐵 − 𝐷) mod 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 (class class class)co 7151 ℝcr 10567 + caddc 10571 − cmin 10901 -cneg 10902 ℝ+crp 12423 mod cmo 13279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 ax-pre-sup 10646 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-sup 8932 df-inf 8933 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-div 11329 df-nn 11668 df-n0 11928 df-z 12014 df-uz 12276 df-rp 12424 df-fl 13204 df-mod 13280 |
This theorem is referenced by: modsubmod 13339 modsubmodmod 13340 znfermltl 31076 proththd 44492 |
Copyright terms: Public domain | W3C validator |