Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > modmulmod | Structured version Visualization version GIF version |
Description: The product of a real number modulo a positive real number and an integer equals the product of the real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
Ref | Expression |
---|---|
modmulmod | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) · 𝐵) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modcl 13639 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ) | |
2 | simpl 484 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ) | |
3 | 1, 2 | jca 513 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) ∈ ℝ ∧ 𝐴 ∈ ℝ)) |
4 | 3 | 3adant2 1131 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) ∈ ℝ ∧ 𝐴 ∈ ℝ)) |
5 | 3simpc 1150 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+)) | |
6 | modabs2 13671 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) mod 𝑀) = (𝐴 mod 𝑀)) | |
7 | 6 | 3adant2 1131 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) mod 𝑀) = (𝐴 mod 𝑀)) |
8 | modmul1 13690 | . 2 ⊢ ((((𝐴 mod 𝑀) ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ ((𝐴 mod 𝑀) mod 𝑀) = (𝐴 mod 𝑀)) → (((𝐴 mod 𝑀) · 𝐵) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) | |
9 | 4, 5, 7, 8 | syl3anc 1371 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) · 𝐵) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 (class class class)co 7307 ℝcr 10916 · cmul 10922 ℤcz 12365 ℝ+crp 12776 mod cmo 13635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9245 df-inf 9246 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-n0 12280 df-z 12366 df-uz 12629 df-rp 12777 df-fl 13558 df-mod 13636 |
This theorem is referenced by: modmulmodr 13703 modaddmulmod 13704 vfermltlALT 16548 powm2modprm 16549 modprm0 16551 |
Copyright terms: Public domain | W3C validator |