MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vfermltlALT Structured version   Visualization version   GIF version

Theorem vfermltlALT 16836
Description: Alternate proof of vfermltl 16835, not using Euler's theorem. (Contributed by AV, 21-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
vfermltlALT ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1)

Proof of Theorem vfermltlALT
StepHypRef Expression
1 2m1e1 12390 . . . . . . . . . . 11 (2 − 1) = 1
21a1i 11 . . . . . . . . . 10 (𝑃 ∈ ℙ → (2 − 1) = 1)
32eqcomd 2741 . . . . . . . . 9 (𝑃 ∈ ℙ → 1 = (2 − 1))
43oveq2d 7447 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 − 1) = (𝑃 − (2 − 1)))
5 prmz 16709 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
65zcnd 12721 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
7 2cnd 12342 . . . . . . . . 9 (𝑃 ∈ ℙ → 2 ∈ ℂ)
8 1cnd 11254 . . . . . . . . 9 (𝑃 ∈ ℙ → 1 ∈ ℂ)
96, 7, 8subsubd 11646 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 − (2 − 1)) = ((𝑃 − 2) + 1))
104, 9eqtrd 2775 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 − 1) = ((𝑃 − 2) + 1))
11103ad2ant1 1132 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 1) = ((𝑃 − 2) + 1))
1211oveq2d 7447 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 1)) = (𝐴↑((𝑃 − 2) + 1)))
13 zcn 12616 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
14133ad2ant2 1133 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℂ)
15 prmm2nn0 16732 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0)
16153ad2ant1 1132 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 2) ∈ ℕ0)
1714, 16expp1d 14184 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑((𝑃 − 2) + 1)) = ((𝐴↑(𝑃 − 2)) · 𝐴))
1812, 17eqtrd 2775 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 1)) = ((𝐴↑(𝑃 − 2)) · 𝐴))
1918oveq1d 7446 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = (((𝐴↑(𝑃 − 2)) · 𝐴) mod 𝑃))
2015anim1i 615 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝑃 − 2) ∈ ℕ0𝐴 ∈ ℤ))
2120ancomd 461 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0))
22 zexpcl 14114 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
2321, 22syl 17 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
2423zred 12720 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
25243adant3 1131 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
26 simp2 1136 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℤ)
27 prmnn 16708 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2827nnrpd 13073 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
29283ad2ant1 1132 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℝ+)
30 modmulmod 13974 . . . 4 (((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℝ+) → ((((𝐴↑(𝑃 − 2)) mod 𝑃) · 𝐴) mod 𝑃) = (((𝐴↑(𝑃 − 2)) · 𝐴) mod 𝑃))
3125, 26, 29, 30syl3anc 1370 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((((𝐴↑(𝑃 − 2)) mod 𝑃) · 𝐴) mod 𝑃) = (((𝐴↑(𝑃 − 2)) · 𝐴) mod 𝑃))
32 zre 12615 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
3332adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℝ)
3415adantr 480 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 − 2) ∈ ℕ0)
3533, 34reexpcld 14200 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
3628adantr 480 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝑃 ∈ ℝ+)
3735, 36modcld 13912 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℝ)
3837recnd 11287 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℂ)
3913adantl 481 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ)
4038, 39mulcomd 11280 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (((𝐴↑(𝑃 − 2)) mod 𝑃) · 𝐴) = (𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)))
41403adant3 1131 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(𝑃 − 2)) mod 𝑃) · 𝐴) = (𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)))
4241oveq1d 7446 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((((𝐴↑(𝑃 − 2)) mod 𝑃) · 𝐴) mod 𝑃) = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
4319, 31, 423eqtr2d 2781 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
44 eqid 2735 . . . 4 ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃)
4544modprminv 16833 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1))
4645simprd 495 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
4743, 46eqtrd 2775 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  (class class class)co 7431  cc 11151  cr 11152  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  2c2 12319  0cn0 12524  cz 12611  +crp 13032  ...cfz 13544   mod cmo 13906  cexp 14099  cdvds 16287  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-phi 16800
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator