MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vfermltlALT Structured version   Visualization version   GIF version

Theorem vfermltlALT 16749
Description: Alternate proof of vfermltl 16748, not using Euler's theorem. (Contributed by AV, 21-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
vfermltlALT ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1)

Proof of Theorem vfermltlALT
StepHypRef Expression
1 2m1e1 12283 . . . . . . . . . . 11 (2 − 1) = 1
21a1i 11 . . . . . . . . . 10 (𝑃 ∈ ℙ → (2 − 1) = 1)
32eqcomd 2735 . . . . . . . . 9 (𝑃 ∈ ℙ → 1 = (2 − 1))
43oveq2d 7385 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 − 1) = (𝑃 − (2 − 1)))
5 prmz 16621 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
65zcnd 12615 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
7 2cnd 12240 . . . . . . . . 9 (𝑃 ∈ ℙ → 2 ∈ ℂ)
8 1cnd 11145 . . . . . . . . 9 (𝑃 ∈ ℙ → 1 ∈ ℂ)
96, 7, 8subsubd 11537 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 − (2 − 1)) = ((𝑃 − 2) + 1))
104, 9eqtrd 2764 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 − 1) = ((𝑃 − 2) + 1))
11103ad2ant1 1133 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 1) = ((𝑃 − 2) + 1))
1211oveq2d 7385 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 1)) = (𝐴↑((𝑃 − 2) + 1)))
13 zcn 12510 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
14133ad2ant2 1134 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℂ)
15 prmm2nn0 16644 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0)
16153ad2ant1 1133 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 2) ∈ ℕ0)
1714, 16expp1d 14088 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑((𝑃 − 2) + 1)) = ((𝐴↑(𝑃 − 2)) · 𝐴))
1812, 17eqtrd 2764 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 1)) = ((𝐴↑(𝑃 − 2)) · 𝐴))
1918oveq1d 7384 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = (((𝐴↑(𝑃 − 2)) · 𝐴) mod 𝑃))
2015anim1i 615 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝑃 − 2) ∈ ℕ0𝐴 ∈ ℤ))
2120ancomd 461 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0))
22 zexpcl 14017 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
2321, 22syl 17 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
2423zred 12614 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
25243adant3 1132 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
26 simp2 1137 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℤ)
27 prmnn 16620 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2827nnrpd 12969 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
29283ad2ant1 1133 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℝ+)
30 modmulmod 13877 . . . 4 (((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℝ+) → ((((𝐴↑(𝑃 − 2)) mod 𝑃) · 𝐴) mod 𝑃) = (((𝐴↑(𝑃 − 2)) · 𝐴) mod 𝑃))
3125, 26, 29, 30syl3anc 1373 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((((𝐴↑(𝑃 − 2)) mod 𝑃) · 𝐴) mod 𝑃) = (((𝐴↑(𝑃 − 2)) · 𝐴) mod 𝑃))
32 zre 12509 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
3332adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℝ)
3415adantr 480 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 − 2) ∈ ℕ0)
3533, 34reexpcld 14104 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
3628adantr 480 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝑃 ∈ ℝ+)
3735, 36modcld 13813 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℝ)
3837recnd 11178 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℂ)
3913adantl 481 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ)
4038, 39mulcomd 11171 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (((𝐴↑(𝑃 − 2)) mod 𝑃) · 𝐴) = (𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)))
41403adant3 1132 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(𝑃 − 2)) mod 𝑃) · 𝐴) = (𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)))
4241oveq1d 7384 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((((𝐴↑(𝑃 − 2)) mod 𝑃) · 𝐴) mod 𝑃) = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
4319, 31, 423eqtr2d 2770 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
44 eqid 2729 . . . 4 ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃)
4544modprminv 16746 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1))
4645simprd 495 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
4743, 46eqtrd 2764 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  (class class class)co 7369  cc 11042  cr 11043  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  2c2 12217  0cn0 12418  cz 12505  +crp 12927  ...cfz 13444   mod cmo 13807  cexp 14002  cdvds 16198  cprime 16617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618  df-phi 16712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator