MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modaddmodlo Structured version   Visualization version   GIF version

Theorem modaddmodlo 13976
Description: The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
modaddmodlo ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀)))

Proof of Theorem modaddmodlo
StepHypRef Expression
1 elfzoelz 13699 . . . . . . . 8 (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → 𝐵 ∈ ℤ)
21zred 12722 . . . . . . 7 (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → 𝐵 ∈ ℝ)
32adantr 480 . . . . . 6 ((𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 ∈ ℝ)
4 zmodcl 13931 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ∈ ℕ0)
54nn0red 12588 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ∈ ℝ)
65adantl 481 . . . . . 6 ((𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) ∈ ℝ)
73, 6readdcld 11290 . . . . 5 ((𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℝ)
87ancoms 458 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℝ)
9 nnrp 13046 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ+)
109ad2antlr 727 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝑀 ∈ ℝ+)
112adantl 481 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝐵 ∈ ℝ)
125adantr 480 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐴 mod 𝑀) ∈ ℝ)
13 elfzole1 13707 . . . . . 6 (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → 0 ≤ 𝐵)
1413adantl 481 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 0 ≤ 𝐵)
154nn0ge0d 12590 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 0 ≤ (𝐴 mod 𝑀))
1615adantr 480 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 0 ≤ (𝐴 mod 𝑀))
1711, 12, 14, 16addge0d 11839 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 0 ≤ (𝐵 + (𝐴 mod 𝑀)))
18 elfzolt2 13708 . . . . . 6 (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → 𝐵 < (𝑀 − (𝐴 mod 𝑀)))
1918adantl 481 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝐵 < (𝑀 − (𝐴 mod 𝑀)))
20 nnre 12273 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
2120ad2antlr 727 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝑀 ∈ ℝ)
2211, 12, 21ltaddsubd 11863 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → ((𝐵 + (𝐴 mod 𝑀)) < 𝑀𝐵 < (𝑀 − (𝐴 mod 𝑀))))
2319, 22mpbird 257 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐵 + (𝐴 mod 𝑀)) < 𝑀)
24 modid 13936 . . . 4 ((((𝐵 + (𝐴 mod 𝑀)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (0 ≤ (𝐵 + (𝐴 mod 𝑀)) ∧ (𝐵 + (𝐴 mod 𝑀)) < 𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = (𝐵 + (𝐴 mod 𝑀)))
258, 10, 17, 23, 24syl22anc 839 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = (𝐵 + (𝐴 mod 𝑀)))
26 zre 12617 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2726adantr 480 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℝ)
2827adantr 480 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝐴 ∈ ℝ)
29 modadd2mod 13962 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
3028, 11, 10, 29syl3anc 1373 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
3125, 30eqtr3d 2779 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀))
3231ex 412 1 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  cr 11154  0cc0 11155   + caddc 11158   < clt 11295  cle 11296  cmin 11492  cn 12266  cz 12613  +crp 13034  ..^cfzo 13694   mod cmo 13909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910
This theorem is referenced by:  cshwidxmod  14841
  Copyright terms: Public domain W3C validator