MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  powm2modprm Structured version   Visualization version   GIF version

Theorem powm2modprm 16733
Description: If an integer minus 1 is divisible by a prime number, then the integer to the power of the prime number minus 2 is 1 modulo the prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
Assertion
Ref Expression
powm2modprm ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1))

Proof of Theorem powm2modprm
StepHypRef Expression
1 simpll 766 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝑃 ∈ ℙ)
2 simpr 484 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
32adantr 480 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝐴 ∈ ℤ)
4 m1dvdsndvds 16728 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ¬ 𝑃𝐴))
54imp 406 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ¬ 𝑃𝐴)
6 eqid 2729 . . . . . 6 ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃)
76modprminv 16729 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1))
8 simpr 484 . . . . . 6 ((((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1) → ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
98eqcomd 2735 . . . . 5 ((((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1) → 1 = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
107, 9syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 1 = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
111, 3, 5, 10syl3anc 1373 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 1 = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
12 modprm1div 16727 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑃) = 1 ↔ 𝑃 ∥ (𝐴 − 1)))
1312biimpar 477 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (𝐴 mod 𝑃) = 1)
1413oveq1d 7368 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴 mod 𝑃) · ((𝐴↑(𝑃 − 2)) mod 𝑃)) = (1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)))
1514oveq1d 7368 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (((𝐴 mod 𝑃) · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
16 zre 12493 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
1716ad2antlr 727 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝐴 ∈ ℝ)
18 prmm2nn0 16627 . . . . . . . . . 10 (𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0)
1918anim1ci 616 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0))
2019adantr 480 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0))
21 zexpcl 14001 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
2220, 21syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
23 prmnn 16603 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2423adantr 480 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝑃 ∈ ℕ)
2524adantr 480 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝑃 ∈ ℕ)
2622, 25zmodcld 13814 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℕ0)
2726nn0zd 12515 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℤ)
2823nnrpd 12953 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
2928adantr 480 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝑃 ∈ ℝ+)
3029adantr 480 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝑃 ∈ ℝ+)
31 modmulmod 13861 . . . . 5 ((𝐴 ∈ ℝ ∧ ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℝ+) → (((𝐴 mod 𝑃) · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
3217, 27, 30, 31syl3anc 1373 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (((𝐴 mod 𝑃) · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
3319, 21syl 17 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
3433, 24zmodcld 13814 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℕ0)
3534nn0cnd 12465 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℂ)
3635mullidd 11152 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
3736oveq1d 7368 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃))
3837adantr 480 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃))
39 reexpcl 14003 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
4016, 18, 39syl2anr 597 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
4140, 29jca 511 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
4241adantr 480 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
43 modabs2 13827 . . . . . 6 (((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
4442, 43syl 17 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
4538, 44eqtrd 2764 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
4615, 32, 453eqtr3d 2772 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
4711, 46eqtr2d 2765 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1)
4847ex 412 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  (class class class)co 7353  cr 11027  1c1 11029   · cmul 11033  cmin 11365  cn 12146  2c2 12201  0cn0 12402  cz 12489  +crp 12911  ...cfz 13428   mod cmo 13791  cexp 13986  cdvds 16181  cprime 16600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424  df-prm 16601  df-phi 16695
This theorem is referenced by:  numclwwlk5  30350
  Copyright terms: Public domain W3C validator