MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  powm2modprm Structured version   Visualization version   GIF version

Theorem powm2modprm 16432
Description: If an integer minus 1 is divisible by a prime number, then the integer to the power of the prime number minus 2 is 1 modulo the prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
Assertion
Ref Expression
powm2modprm ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1))

Proof of Theorem powm2modprm
StepHypRef Expression
1 simpll 763 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝑃 ∈ ℙ)
2 simpr 484 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
32adantr 480 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝐴 ∈ ℤ)
4 m1dvdsndvds 16427 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ¬ 𝑃𝐴))
54imp 406 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ¬ 𝑃𝐴)
6 eqid 2738 . . . . . 6 ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃)
76modprminv 16428 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1))
8 simpr 484 . . . . . 6 ((((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1) → ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
98eqcomd 2744 . . . . 5 ((((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1) → 1 = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
107, 9syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 1 = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
111, 3, 5, 10syl3anc 1369 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 1 = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
12 modprm1div 16426 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑃) = 1 ↔ 𝑃 ∥ (𝐴 − 1)))
1312biimpar 477 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (𝐴 mod 𝑃) = 1)
1413oveq1d 7270 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴 mod 𝑃) · ((𝐴↑(𝑃 − 2)) mod 𝑃)) = (1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)))
1514oveq1d 7270 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (((𝐴 mod 𝑃) · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
16 zre 12253 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
1716ad2antlr 723 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝐴 ∈ ℝ)
18 prmm2nn0 16331 . . . . . . . . . 10 (𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0)
1918anim1ci 615 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0))
2019adantr 480 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0))
21 zexpcl 13725 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
2220, 21syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
23 prmnn 16307 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2423adantr 480 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝑃 ∈ ℕ)
2524adantr 480 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝑃 ∈ ℕ)
2622, 25zmodcld 13540 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℕ0)
2726nn0zd 12353 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℤ)
2823nnrpd 12699 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
2928adantr 480 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝑃 ∈ ℝ+)
3029adantr 480 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝑃 ∈ ℝ+)
31 modmulmod 13584 . . . . 5 ((𝐴 ∈ ℝ ∧ ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℝ+) → (((𝐴 mod 𝑃) · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
3217, 27, 30, 31syl3anc 1369 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (((𝐴 mod 𝑃) · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
3319, 21syl 17 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
3433, 24zmodcld 13540 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℕ0)
3534nn0cnd 12225 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℂ)
3635mulid2d 10924 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
3736oveq1d 7270 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃))
3837adantr 480 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃))
39 reexpcl 13727 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
4016, 18, 39syl2anr 596 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
4140, 29jca 511 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
4241adantr 480 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
43 modabs2 13553 . . . . . 6 (((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
4442, 43syl 17 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
4538, 44eqtrd 2778 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
4615, 32, 453eqtr3d 2786 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
4711, 46eqtr2d 2779 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1)
4847ex 412 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801  1c1 10803   · cmul 10807  cmin 11135  cn 11903  2c2 11958  0cn0 12163  cz 12249  +crp 12659  ...cfz 13168   mod cmo 13517  cexp 13710  cdvds 15891  cprime 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305  df-phi 16395
This theorem is referenced by:  numclwwlk5  28653
  Copyright terms: Public domain W3C validator