Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ↔ wb 205
∈ wcel 2104 class class class wbr 5147
(class class class)co 7411 ℝcr 11111
0cc0 11112 < clt 11252
− cmin 11448 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911
ax-6 1969 ax-7 2009 ax-8 2106
ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-sub 11450 df-neg 11451 |
This theorem is referenced by: possumd
11843 ltmul1a
12067 cshwcsh2id
14783 01sqrexlem7
15199 fsumlt
15750 bpoly4
16007 sin01gt0
16137 nno
16329 pythagtriplem10
16757 evth
24705 minveclem4
25180 ismbf3d
25403 itg2seq
25492 dvferm1lem
25736 dvferm2lem
25738 mvth
25744 dvlip
25745 dvgt0
25756 dvlt0
25757 dvge0
25758 dvcvx
25772 ftc1lem4
25791 pilem2
26200 cosordlem
26275 lgamgulmlem2
26770 lgsquadlem1
27119 brbtwn2
28430 axpaschlem
28465 axcontlem8
28496 crctcshwlkn0
29342 clwlkclwwlklem2a4
29517 clwwlkext2edg
29576 minvecolem4
30400 cycpmrn
32572 sgnsub
33841 signslema
33871 fdvposlt
33909 tgoldbachgtde
33970 dnibndlem5
35661 unbdqndv2lem2
35689 knoppndvlem2
35692 knoppndvlem21
35711 poimirlem7
36798 itg2addnclem
36842 itg2gt0cn
36846 ftc1cnnclem
36862 areacirclem1
36879 areacirc
36884 sticksstones12a
41279 metakunt29
41319 metakunt30
41320 3cubeslem1
41724 irrapxlem3
41864 pell14qrgt0
41899 rmspecnonsq
41947 rmspecfund
41949 rmspecpos
41957 jm3.1lem1
42058 radcnvrat
43375 supxrgere
44341 supxrgelem
44345 dvbdfbdioolem1
44942 dvbdfbdioolem2
44943 ioodvbdlimc1lem1
44945 ioodvbdlimc1lem2
44946 ioodvbdlimc2lem
44948 dvnxpaek
44956 wallispilem4
45082 wallispi2lem1
45085 stirlinglem11
45098 fourierdlem4
45125 fourierdlem6
45127 fourierdlem7
45128 fourierdlem19
45140 fourierdlem26
45147 fourierdlem41
45162 fourierdlem42
45163 fourierdlem48
45168 fourierdlem49
45169 fourierdlem51
45171 fourierdlem61
45181 fourierdlem63
45183 fourierdlem64
45184 fourierdlem65
45185 fourierdlem71
45191 fourierdlem79
45199 fourierdlem89
45209 fourierdlem90
45210 fourierdlem91
45211 fouriersw
45245 etransclem15
45263 etransclem24
45272 etransclem25
45273 etransclem35
45283 ioorrnopnlem
45318 hoidmvlelem2
45610 hoiqssbllem2
45637 iunhoiioolem
45689 zm1nn
46308 nnoALTV
46661 fllog2
47341 dignn0flhalflem1
47388 eenglngeehlnmlem2
47511 2itscp
47554 |