Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ↔ wb 205
∈ wcel 2107 class class class wbr 5149
(class class class)co 7409 ℝcr 11109
0cc0 11110 < clt 11248
− cmin 11444 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 df-neg 11447 |
This theorem is referenced by: possumd
11839 ltmul1a
12063 cshwcsh2id
14779 01sqrexlem7
15195 fsumlt
15746 bpoly4
16003 sin01gt0
16133 nno
16325 pythagtriplem10
16753 evth
24475 minveclem4
24949 ismbf3d
25171 itg2seq
25260 dvferm1lem
25501 dvferm2lem
25503 mvth
25509 dvlip
25510 dvgt0
25521 dvlt0
25522 dvge0
25523 dvcvx
25537 ftc1lem4
25556 pilem2
25964 cosordlem
26039 lgamgulmlem2
26534 lgsquadlem1
26883 brbtwn2
28163 axpaschlem
28198 axcontlem8
28229 crctcshwlkn0
29075 clwlkclwwlklem2a4
29250 clwwlkext2edg
29309 minvecolem4
30133 cycpmrn
32302 sgnsub
33543 signslema
33573 fdvposlt
33611 tgoldbachgtde
33672 dnibndlem5
35358 unbdqndv2lem2
35386 knoppndvlem2
35389 knoppndvlem21
35408 poimirlem7
36495 itg2addnclem
36539 itg2gt0cn
36543 ftc1cnnclem
36559 areacirclem1
36576 areacirc
36581 sticksstones12a
40973 metakunt29
41013 metakunt30
41014 3cubeslem1
41422 irrapxlem3
41562 pell14qrgt0
41597 rmspecnonsq
41645 rmspecfund
41647 rmspecpos
41655 jm3.1lem1
41756 radcnvrat
43073 supxrgere
44043 supxrgelem
44047 dvbdfbdioolem1
44644 dvbdfbdioolem2
44645 ioodvbdlimc1lem1
44647 ioodvbdlimc1lem2
44648 ioodvbdlimc2lem
44650 dvnxpaek
44658 wallispilem4
44784 wallispi2lem1
44787 stirlinglem11
44800 fourierdlem4
44827 fourierdlem6
44829 fourierdlem7
44830 fourierdlem19
44842 fourierdlem26
44849 fourierdlem41
44864 fourierdlem42
44865 fourierdlem48
44870 fourierdlem49
44871 fourierdlem51
44873 fourierdlem61
44883 fourierdlem63
44885 fourierdlem64
44886 fourierdlem65
44887 fourierdlem71
44893 fourierdlem79
44901 fourierdlem89
44911 fourierdlem90
44912 fourierdlem91
44913 fouriersw
44947 etransclem15
44965 etransclem24
44974 etransclem25
44975 etransclem35
44985 ioorrnopnlem
45020 hoidmvlelem2
45312 hoiqssbllem2
45339 iunhoiioolem
45391 zm1nn
46010 nnoALTV
46363 fllog2
47254 dignn0flhalflem1
47301 eenglngeehlnmlem2
47424 2itscp
47467 |