Proof of Theorem 0dig2nn0o
| Step | Hyp | Ref
| Expression |
| 1 | | 2nn 12318 |
. . . 4
⊢ 2 ∈
ℕ |
| 2 | 1 | a1i 11 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → 2 ∈ ℕ) |
| 3 | | 0nn0 12521 |
. . . 4
⊢ 0 ∈
ℕ0 |
| 4 | 3 | a1i 11 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → 0 ∈ ℕ0) |
| 5 | | nn0rp0 13477 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
(0[,)+∞)) |
| 6 | 5 | adantr 480 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → 𝑁 ∈ (0[,)+∞)) |
| 7 | | nn0digval 48547 |
. . 3
⊢ ((2
∈ ℕ ∧ 0 ∈ ℕ0 ∧ 𝑁 ∈ (0[,)+∞)) →
(0(digit‘2)𝑁) =
((⌊‘(𝑁 /
(2↑0))) mod 2)) |
| 8 | 2, 4, 6, 7 | syl3anc 1373 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2)) |
| 9 | | 2cn 12320 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
| 10 | | exp0 14088 |
. . . . . . . 8
⊢ (2 ∈
ℂ → (2↑0) = 1) |
| 11 | 9, 10 | mp1i 13 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → (2↑0) = 1) |
| 12 | 11 | oveq2d 7426 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → (𝑁 / (2↑0)) = (𝑁 / 1)) |
| 13 | | nn0cn 12516 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
| 14 | 13 | div1d 12014 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (𝑁 / 1) = 𝑁) |
| 15 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → (𝑁 / 1) = 𝑁) |
| 16 | 12, 15 | eqtrd 2771 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → (𝑁 / (2↑0)) = 𝑁) |
| 17 | 16 | fveq2d 6885 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → (⌊‘(𝑁 / (2↑0))) = (⌊‘𝑁)) |
| 18 | 17 | oveq1d 7425 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) =
((⌊‘𝑁) mod
2)) |
| 19 | | nn0z 12618 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
| 20 | | flid 13830 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ →
(⌊‘𝑁) = 𝑁) |
| 21 | 19, 20 | syl 17 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (⌊‘𝑁) =
𝑁) |
| 22 | 21 | oveq1d 7425 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ((⌊‘𝑁)
mod 2) = (𝑁 mod
2)) |
| 23 | 22 | adantr 480 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → ((⌊‘𝑁) mod 2) = (𝑁 mod 2)) |
| 24 | | nn0z 12618 |
. . . . . . . 8
⊢ (((𝑁 + 1) / 2) ∈
ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ) |
| 25 | 24 | adantl 481 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → ((𝑁 + 1) / 2) ∈ ℤ) |
| 26 | | 2z 12629 |
. . . . . . . . 9
⊢ 2 ∈
ℤ |
| 27 | 26 | a1i 11 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → 2 ∈ ℤ) |
| 28 | | 2ne0 12349 |
. . . . . . . . 9
⊢ 2 ≠
0 |
| 29 | 28 | a1i 11 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → 2 ≠ 0) |
| 30 | | peano2nn0 12546 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
| 31 | 30 | nn0zd 12619 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℤ) |
| 32 | 31 | adantr 480 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → (𝑁 + 1) ∈ ℤ) |
| 33 | | dvdsval2 16280 |
. . . . . . . 8
⊢ ((2
∈ ℤ ∧ 2 ≠ 0 ∧ (𝑁 + 1) ∈ ℤ) → (2 ∥
(𝑁 + 1) ↔ ((𝑁 + 1) / 2) ∈
ℤ)) |
| 34 | 27, 29, 32, 33 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → (2 ∥ (𝑁 + 1) ↔ ((𝑁 + 1) / 2) ∈ ℤ)) |
| 35 | 25, 34 | mpbird 257 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → 2 ∥ (𝑁 + 1)) |
| 36 | | oddp1even 16368 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → (¬ 2
∥ 𝑁 ↔ 2 ∥
(𝑁 + 1))) |
| 37 | 19, 36 | syl 17 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (¬ 2 ∥ 𝑁
↔ 2 ∥ (𝑁 +
1))) |
| 38 | 37 | adantr 480 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1))) |
| 39 | 35, 38 | mpbird 257 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → ¬ 2 ∥ 𝑁) |
| 40 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → 𝑁 ∈ ℤ) |
| 41 | | mod2eq1n2dvds 16371 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2
∥ 𝑁)) |
| 42 | 40, 41 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) |
| 43 | 39, 42 | mpbird 257 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → (𝑁 mod 2) = 1) |
| 44 | 23, 43 | eqtrd 2771 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → ((⌊‘𝑁) mod 2) = 1) |
| 45 | 18, 44 | eqtrd 2771 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = 1) |
| 46 | 8, 45 | eqtrd 2771 |
1
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑁 + 1) / 2) ∈
ℕ0) → (0(digit‘2)𝑁) = 1) |