Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0dig2nn0o Structured version   Visualization version   GIF version

Theorem 0dig2nn0o 44953
Description: The last bit of an odd integer is 1. (Contributed by AV, 3-Jun-2010.)
Assertion
Ref Expression
0dig2nn0o ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 1)

Proof of Theorem 0dig2nn0o
StepHypRef Expression
1 2nn 11707 . . . 4 2 ∈ ℕ
21a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 2 ∈ ℕ)
3 0nn0 11909 . . . 4 0 ∈ ℕ0
43a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 0 ∈ ℕ0)
5 nn0rp0 12842 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
65adantr 484 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 𝑁 ∈ (0[,)+∞))
7 nn0digval 44940 . . 3 ((2 ∈ ℕ ∧ 0 ∈ ℕ0𝑁 ∈ (0[,)+∞)) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2))
82, 4, 6, 7syl3anc 1368 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2))
9 2cn 11709 . . . . . . . 8 2 ∈ ℂ
10 exp0 13438 . . . . . . . 8 (2 ∈ ℂ → (2↑0) = 1)
119, 10mp1i 13 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2↑0) = 1)
1211oveq2d 7165 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = (𝑁 / 1))
13 nn0cn 11904 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
1413div1d 11406 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 / 1) = 𝑁)
1514adantr 484 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 / 1) = 𝑁)
1612, 15eqtrd 2859 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = 𝑁)
1716fveq2d 6665 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(𝑁 / (2↑0))) = (⌊‘𝑁))
1817oveq1d 7164 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = ((⌊‘𝑁) mod 2))
19 nn0z 12002 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
20 flid 13182 . . . . . . 7 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
2119, 20syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (⌊‘𝑁) = 𝑁)
2221oveq1d 7164 . . . . 5 (𝑁 ∈ ℕ0 → ((⌊‘𝑁) mod 2) = (𝑁 mod 2))
2322adantr 484 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = (𝑁 mod 2))
24 nn0z 12002 . . . . . . . 8 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
2524adantl 485 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 + 1) / 2) ∈ ℤ)
26 2z 12011 . . . . . . . . 9 2 ∈ ℤ
2726a1i 11 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 2 ∈ ℤ)
28 2ne0 11738 . . . . . . . . 9 2 ≠ 0
2928a1i 11 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 2 ≠ 0)
30 peano2nn0 11934 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
3130nn0zd 12082 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
3231adantr 484 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 + 1) ∈ ℤ)
33 dvdsval2 15610 . . . . . . . 8 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑁 + 1) ∈ ℤ) → (2 ∥ (𝑁 + 1) ↔ ((𝑁 + 1) / 2) ∈ ℤ))
3427, 29, 32, 33syl3anc 1368 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 ∥ (𝑁 + 1) ↔ ((𝑁 + 1) / 2) ∈ ℤ))
3525, 34mpbird 260 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 2 ∥ (𝑁 + 1))
36 oddp1even 15693 . . . . . . . 8 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))
3719, 36syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))
3837adantr 484 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))
3935, 38mpbird 260 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ¬ 2 ∥ 𝑁)
4019adantr 484 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 𝑁 ∈ ℤ)
41 mod2eq1n2dvds 15696 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
4240, 41syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
4339, 42mpbird 260 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 mod 2) = 1)
4423, 43eqtrd 2859 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = 1)
4518, 44eqtrd 2859 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = 1)
468, 45eqtrd 2859 1 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014   class class class wbr 5052  cfv 6343  (class class class)co 7149  cc 10533  0cc0 10535  1c1 10536   + caddc 10538  +∞cpnf 10670   / cdiv 11295  cn 11634  2c2 11689  0cn0 11894  cz 11978  [,)cico 12737  cfl 13164   mod cmo 13241  cexp 13434  cdvds 15607  digitcdig 44935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-sup 8903  df-inf 8904  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-ico 12741  df-fl 13166  df-mod 13242  df-seq 13374  df-exp 13435  df-dvds 15608  df-dig 44936
This theorem is referenced by:  nn0sumshdiglemB  44960
  Copyright terms: Public domain W3C validator