Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0dig2nn0o Structured version   Visualization version   GIF version

Theorem 0dig2nn0o 45928
Description: The last bit of an odd integer is 1. (Contributed by AV, 3-Jun-2010.)
Assertion
Ref Expression
0dig2nn0o ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 1)

Proof of Theorem 0dig2nn0o
StepHypRef Expression
1 2nn 12046 . . . 4 2 ∈ ℕ
21a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 2 ∈ ℕ)
3 0nn0 12248 . . . 4 0 ∈ ℕ0
43a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 0 ∈ ℕ0)
5 nn0rp0 13186 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
65adantr 481 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 𝑁 ∈ (0[,)+∞))
7 nn0digval 45915 . . 3 ((2 ∈ ℕ ∧ 0 ∈ ℕ0𝑁 ∈ (0[,)+∞)) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2))
82, 4, 6, 7syl3anc 1370 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2))
9 2cn 12048 . . . . . . . 8 2 ∈ ℂ
10 exp0 13784 . . . . . . . 8 (2 ∈ ℂ → (2↑0) = 1)
119, 10mp1i 13 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2↑0) = 1)
1211oveq2d 7287 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = (𝑁 / 1))
13 nn0cn 12243 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
1413div1d 11743 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 / 1) = 𝑁)
1514adantr 481 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 / 1) = 𝑁)
1612, 15eqtrd 2780 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = 𝑁)
1716fveq2d 6775 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(𝑁 / (2↑0))) = (⌊‘𝑁))
1817oveq1d 7286 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = ((⌊‘𝑁) mod 2))
19 nn0z 12343 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
20 flid 13526 . . . . . . 7 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
2119, 20syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (⌊‘𝑁) = 𝑁)
2221oveq1d 7286 . . . . 5 (𝑁 ∈ ℕ0 → ((⌊‘𝑁) mod 2) = (𝑁 mod 2))
2322adantr 481 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = (𝑁 mod 2))
24 nn0z 12343 . . . . . . . 8 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
2524adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 + 1) / 2) ∈ ℤ)
26 2z 12352 . . . . . . . . 9 2 ∈ ℤ
2726a1i 11 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 2 ∈ ℤ)
28 2ne0 12077 . . . . . . . . 9 2 ≠ 0
2928a1i 11 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 2 ≠ 0)
30 peano2nn0 12273 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
3130nn0zd 12423 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
3231adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 + 1) ∈ ℤ)
33 dvdsval2 15964 . . . . . . . 8 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑁 + 1) ∈ ℤ) → (2 ∥ (𝑁 + 1) ↔ ((𝑁 + 1) / 2) ∈ ℤ))
3427, 29, 32, 33syl3anc 1370 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 ∥ (𝑁 + 1) ↔ ((𝑁 + 1) / 2) ∈ ℤ))
3525, 34mpbird 256 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 2 ∥ (𝑁 + 1))
36 oddp1even 16051 . . . . . . . 8 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))
3719, 36syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))
3837adantr 481 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))
3935, 38mpbird 256 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ¬ 2 ∥ 𝑁)
4019adantr 481 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → 𝑁 ∈ ℤ)
41 mod2eq1n2dvds 16054 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
4240, 41syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
4339, 42mpbird 256 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 mod 2) = 1)
4423, 43eqtrd 2780 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = 1)
4518, 44eqtrd 2780 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = 1)
468, 45eqtrd 2780 1 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  cfv 6432  (class class class)co 7271  cc 10870  0cc0 10872  1c1 10873   + caddc 10875  +∞cpnf 11007   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  [,)cico 13080  cfl 13508   mod cmo 13587  cexp 13780  cdvds 15961  digitcdig 45910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-inf 9180  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-ico 13084  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-dvds 15962  df-dig 45911
This theorem is referenced by:  nn0sumshdiglemB  45935
  Copyright terms: Public domain W3C validator