MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opfi1ind Structured version   Visualization version   GIF version

Theorem opfi1ind 13861
Description: Properties of an ordered pair with a finite first component, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as orderd pairs of vertices and edges) with a finite number of vertices, e.g. fusgrfis 27116. (Contributed by AV, 22-Oct-2020.) (Revised by AV, 28-Mar-2021.)
Hypotheses
Ref Expression
opfi1ind.e 𝐸 ∈ V
opfi1ind.f 𝐹 ∈ V
opfi1ind.1 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
opfi1ind.2 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
opfi1ind.3 ((⟨𝑣, 𝑒⟩ ∈ 𝐺𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺)
opfi1ind.4 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
opfi1ind.base ((⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = 0) → 𝜓)
opfi1ind.step ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
Assertion
Ref Expression
opfi1ind ((⟨𝑉, 𝐸⟩ ∈ 𝐺𝑉 ∈ Fin) → 𝜑)
Distinct variable groups:   𝑒,𝐸,𝑛,𝑣   𝑓,𝐹,𝑤   𝑒,𝐺,𝑓,𝑛,𝑣,𝑤,𝑦   𝑒,𝑉,𝑛,𝑣   𝜓,𝑓,𝑛,𝑤,𝑦   𝜃,𝑒,𝑛,𝑣   𝜒,𝑓,𝑤   𝜑,𝑒,𝑛,𝑣
Allowed substitution hints:   𝜑(𝑦,𝑤,𝑓)   𝜓(𝑣,𝑒)   𝜒(𝑦,𝑣,𝑒,𝑛)   𝜃(𝑦,𝑤,𝑓)   𝐸(𝑦,𝑤,𝑓)   𝐹(𝑦,𝑣,𝑒,𝑛)   𝑉(𝑦,𝑤,𝑓)

Proof of Theorem opfi1ind
StepHypRef Expression
1 hashge0 13749 . . 3 (𝑉 ∈ Fin → 0 ≤ (♯‘𝑉))
21adantl 485 . 2 ((⟨𝑉, 𝐸⟩ ∈ 𝐺𝑉 ∈ Fin) → 0 ≤ (♯‘𝑉))
3 opfi1ind.e . . 3 𝐸 ∈ V
4 opfi1ind.f . . 3 𝐹 ∈ V
5 0nn0 11905 . . 3 0 ∈ ℕ0
6 opfi1ind.1 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
7 opfi1ind.2 . . 3 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
8 opfi1ind.3 . . 3 ((⟨𝑣, 𝑒⟩ ∈ 𝐺𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺)
9 opfi1ind.4 . . 3 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
10 opfi1ind.base . . 3 ((⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = 0) → 𝜓)
11 opfi1ind.step . . 3 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
123, 4, 5, 6, 7, 8, 9, 10, 11opfi1uzind 13860 . 2 ((⟨𝑉, 𝐸⟩ ∈ 𝐺𝑉 ∈ Fin ∧ 0 ≤ (♯‘𝑉)) → 𝜑)
132, 12mpd3an3 1459 1 ((⟨𝑉, 𝐸⟩ ∈ 𝐺𝑉 ∈ Fin) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  Vcvv 3480  cdif 3916  {csn 4549  cop 4555   class class class wbr 5052  cfv 6343  (class class class)co 7145  Fincfn 8499  0cc0 10529  1c1 10530   + caddc 10532  cle 10668  0cn0 11890  chash 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-dju 9321  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11891  df-xnn0 11961  df-z 11975  df-uz 12237  df-fz 12891  df-hash 13692
This theorem is referenced by:  fusgrfis  27116  cusgrsize  27240  finsumvtxdg2size  27336
  Copyright terms: Public domain W3C validator