![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppgsubg | Structured version Visualization version GIF version |
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.) |
Ref | Expression |
---|---|
oppggic.o | β’ π = (oppgβπΊ) |
Ref | Expression |
---|---|
oppgsubg | β’ (SubGrpβπΊ) = (SubGrpβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgrcl 19011 | . . 3 β’ (π₯ β (SubGrpβπΊ) β πΊ β Grp) | |
2 | subgrcl 19011 | . . . 4 β’ (π₯ β (SubGrpβπ) β π β Grp) | |
3 | oppggic.o | . . . . 5 β’ π = (oppgβπΊ) | |
4 | 3 | oppggrpb 19225 | . . . 4 β’ (πΊ β Grp β π β Grp) |
5 | 2, 4 | sylibr 233 | . . 3 β’ (π₯ β (SubGrpβπ) β πΊ β Grp) |
6 | 3 | oppgsubm 19229 | . . . . . . 7 β’ (SubMndβπΊ) = (SubMndβπ) |
7 | 6 | eleq2i 2826 | . . . . . 6 β’ (π₯ β (SubMndβπΊ) β π₯ β (SubMndβπ)) |
8 | 7 | a1i 11 | . . . . 5 β’ (πΊ β Grp β (π₯ β (SubMndβπΊ) β π₯ β (SubMndβπ))) |
9 | eqid 2733 | . . . . . . . . 9 β’ (invgβπΊ) = (invgβπΊ) | |
10 | 3, 9 | oppginv 19226 | . . . . . . . 8 β’ (πΊ β Grp β (invgβπΊ) = (invgβπ)) |
11 | 10 | fveq1d 6894 | . . . . . . 7 β’ (πΊ β Grp β ((invgβπΊ)βπ¦) = ((invgβπ)βπ¦)) |
12 | 11 | eleq1d 2819 | . . . . . 6 β’ (πΊ β Grp β (((invgβπΊ)βπ¦) β π₯ β ((invgβπ)βπ¦) β π₯)) |
13 | 12 | ralbidv 3178 | . . . . 5 β’ (πΊ β Grp β (βπ¦ β π₯ ((invgβπΊ)βπ¦) β π₯ β βπ¦ β π₯ ((invgβπ)βπ¦) β π₯)) |
14 | 8, 13 | anbi12d 632 | . . . 4 β’ (πΊ β Grp β ((π₯ β (SubMndβπΊ) β§ βπ¦ β π₯ ((invgβπΊ)βπ¦) β π₯) β (π₯ β (SubMndβπ) β§ βπ¦ β π₯ ((invgβπ)βπ¦) β π₯))) |
15 | 9 | issubg3 19024 | . . . 4 β’ (πΊ β Grp β (π₯ β (SubGrpβπΊ) β (π₯ β (SubMndβπΊ) β§ βπ¦ β π₯ ((invgβπΊ)βπ¦) β π₯))) |
16 | eqid 2733 | . . . . . 6 β’ (invgβπ) = (invgβπ) | |
17 | 16 | issubg3 19024 | . . . . 5 β’ (π β Grp β (π₯ β (SubGrpβπ) β (π₯ β (SubMndβπ) β§ βπ¦ β π₯ ((invgβπ)βπ¦) β π₯))) |
18 | 4, 17 | sylbi 216 | . . . 4 β’ (πΊ β Grp β (π₯ β (SubGrpβπ) β (π₯ β (SubMndβπ) β§ βπ¦ β π₯ ((invgβπ)βπ¦) β π₯))) |
19 | 14, 15, 18 | 3bitr4d 311 | . . 3 β’ (πΊ β Grp β (π₯ β (SubGrpβπΊ) β π₯ β (SubGrpβπ))) |
20 | 1, 5, 19 | pm5.21nii 380 | . 2 β’ (π₯ β (SubGrpβπΊ) β π₯ β (SubGrpβπ)) |
21 | 20 | eqriv 2730 | 1 β’ (SubGrpβπΊ) = (SubGrpβπ) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3062 βcfv 6544 SubMndcsubmnd 18670 Grpcgrp 18819 invgcminusg 18820 SubGrpcsubg 19000 oppgcoppg 19209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-grp 18822 df-minusg 18823 df-subg 19003 df-oppg 19210 |
This theorem is referenced by: lsmmod2 19544 lsmdisj2r 19553 |
Copyright terms: Public domain | W3C validator |