MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsr1 Structured version   Visualization version   GIF version

Theorem opsr1 19948
Description: One in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
opsr0.s 𝑆 = (𝐼 mPwSer 𝑅)
opsr0.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsr0.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
Assertion
Ref Expression
opsr1 (𝜑 → (1r𝑆) = (1r𝑂))

Proof of Theorem opsr1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2825 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
2 opsr0.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
3 opsr0.o . . 3 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
4 opsr0.t . . 3 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
52, 3, 4opsrbas 19838 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑂))
62, 3, 4opsrmulr 19840 . . 3 (𝜑 → (.r𝑆) = (.r𝑂))
76oveqdr 6932 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(.r𝑆)𝑦) = (𝑥(.r𝑂)𝑦))
81, 5, 7rngidpropd 19048 1 (𝜑 → (1r𝑆) = (1r𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wss 3797   × cxp 5339  cfv 6122  (class class class)co 6904  Basecbs 16221  .rcmulr 16305  1rcur 18854   mPwSer cmps 19711   ordPwSer copws 19715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-er 8008  df-en 8222  df-dom 8223  df-sdom 8224  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-nn 11350  df-2 11413  df-3 11414  df-4 11415  df-5 11416  df-6 11417  df-7 11418  df-8 11419  df-9 11420  df-dec 11821  df-ndx 16224  df-slot 16225  df-base 16227  df-sets 16228  df-plusg 16317  df-mulr 16318  df-ple 16324  df-0g 16454  df-mgp 18843  df-ur 18855  df-psr 19716  df-opsr 19720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator