MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrassa Structured version   Visualization version   GIF version

Theorem opsrassa 21389
Description: The ring of ordered power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
opsrcrng.o 𝑂 = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)
opsrcrng.i (πœ‘ β†’ 𝐼 ∈ 𝑉)
opsrcrng.r (πœ‘ β†’ 𝑅 ∈ CRing)
opsrcrng.t (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))
Assertion
Ref Expression
opsrassa (πœ‘ β†’ 𝑂 ∈ AssAlg)

Proof of Theorem opsrassa
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 opsrcrng.i . . 3 (πœ‘ β†’ 𝐼 ∈ 𝑉)
3 opsrcrng.r . . 3 (πœ‘ β†’ 𝑅 ∈ CRing)
41, 2, 3psrassa 21305 . 2 (πœ‘ β†’ (𝐼 mPwSer 𝑅) ∈ AssAlg)
5 eqidd 2739 . . 3 (πœ‘ β†’ (Baseβ€˜(𝐼 mPwSer 𝑅)) = (Baseβ€˜(𝐼 mPwSer 𝑅)))
6 opsrcrng.o . . . 4 𝑂 = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)
7 opsrcrng.t . . . 4 (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))
81, 6, 7opsrbas 21374 . . 3 (πœ‘ β†’ (Baseβ€˜(𝐼 mPwSer 𝑅)) = (Baseβ€˜π‘‚))
91, 6, 7opsrplusg 21376 . . . 4 (πœ‘ β†’ (+gβ€˜(𝐼 mPwSer 𝑅)) = (+gβ€˜π‘‚))
109oveqdr 7378 . . 3 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜(𝐼 mPwSer 𝑅)) ∧ 𝑦 ∈ (Baseβ€˜(𝐼 mPwSer 𝑅)))) β†’ (π‘₯(+gβ€˜(𝐼 mPwSer 𝑅))𝑦) = (π‘₯(+gβ€˜π‘‚)𝑦))
111, 6, 7opsrmulr 21378 . . . 4 (πœ‘ β†’ (.rβ€˜(𝐼 mPwSer 𝑅)) = (.rβ€˜π‘‚))
1211oveqdr 7378 . . 3 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜(𝐼 mPwSer 𝑅)) ∧ 𝑦 ∈ (Baseβ€˜(𝐼 mPwSer 𝑅)))) β†’ (π‘₯(.rβ€˜(𝐼 mPwSer 𝑅))𝑦) = (π‘₯(.rβ€˜π‘‚)𝑦))
131, 2, 3psrsca 21280 . . 3 (πœ‘ β†’ 𝑅 = (Scalarβ€˜(𝐼 mPwSer 𝑅)))
141, 6, 7, 2, 3opsrsca 21382 . . 3 (πœ‘ β†’ 𝑅 = (Scalarβ€˜π‘‚))
15 eqid 2738 . . 3 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
161, 6, 7opsrvsca 21380 . . . 4 (πœ‘ β†’ ( ·𝑠 β€˜(𝐼 mPwSer 𝑅)) = ( ·𝑠 β€˜π‘‚))
1716oveqdr 7378 . . 3 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜π‘…) ∧ 𝑦 ∈ (Baseβ€˜(𝐼 mPwSer 𝑅)))) β†’ (π‘₯( ·𝑠 β€˜(𝐼 mPwSer 𝑅))𝑦) = (π‘₯( ·𝑠 β€˜π‘‚)𝑦))
185, 8, 10, 12, 13, 14, 15, 17assapropd 21198 . 2 (πœ‘ β†’ ((𝐼 mPwSer 𝑅) ∈ AssAlg ↔ 𝑂 ∈ AssAlg))
194, 18mpbid 231 1 (πœ‘ β†’ 𝑂 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   βŠ† wss 3909   Γ— cxp 5629  β€˜cfv 6492  (class class class)co 7350  Basecbs 17018  +gcplusg 17068  .rcmulr 17069   ·𝑠 cvsca 17072  CRingccrg 19889  AssAlgcasa 21179   mPwSer cmps 21229   ordPwSer copws 21233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-iin 4956  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-isom 6501  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-of 7608  df-ofr 7609  df-om 7794  df-1st 7912  df-2nd 7913  df-supp 8061  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-1o 8380  df-er 8582  df-map 8701  df-pm 8702  df-ixp 8770  df-en 8818  df-dom 8819  df-sdom 8820  df-fin 8821  df-fsupp 9240  df-oi 9380  df-card 9809  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-nn 12088  df-2 12150  df-3 12151  df-4 12152  df-5 12153  df-6 12154  df-7 12155  df-8 12156  df-9 12157  df-n0 12348  df-z 12434  df-dec 12552  df-uz 12697  df-fz 13354  df-fzo 13497  df-seq 13836  df-hash 14159  df-struct 16954  df-sets 16971  df-slot 16989  df-ndx 17001  df-base 17019  df-ress 17048  df-plusg 17081  df-mulr 17082  df-sca 17084  df-vsca 17085  df-tset 17087  df-ple 17088  df-0g 17258  df-gsum 17259  df-mre 17401  df-mrc 17402  df-acs 17404  df-mgm 18432  df-sgrp 18481  df-mnd 18492  df-mhm 18536  df-submnd 18537  df-grp 18686  df-minusg 18687  df-mulg 18807  df-ghm 18938  df-cntz 19029  df-cmn 19493  df-abl 19494  df-mgp 19826  df-ur 19843  df-ring 19890  df-cring 19891  df-lmod 20247  df-assa 21182  df-psr 21234  df-opsr 21238
This theorem is referenced by:  psr1assa  21481
  Copyright terms: Public domain W3C validator